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Abstract There is growing evidence that early nutrition

affects later cognitive performance. The idea that the diet of

mothers, infants, and children could affect later mental per-

formance has major implications for public health practice

and policy development and for our understanding of human

biology as well as for food product development, economic

progress, and future wealth creation. To date, however, much

of the evidence is from animal, retrospective studies and

short-term nutritional intervention studies in humans. The

positive effect of micronutrients on health, especially of

pregnant women eating well to maximise their child’s cog-

nitive and behavioural outcomes, is commonly acknowl-

edged. The current evidence of an association between

gestational nutrition and brain development in healthy chil-

dren is more credible for folate, n-3 fatty acids, and iron.

Recent findings highlight the fact that single-nutrient sup-

plementation is less adequate than supplementation with

more complex formulae. However, the optimal content of

micronutrient supplementation and whether there is a long-

term impact on child’s neurodevelopment needs to be

investigated further. Moreover, it is also evident that future

studies should take into account genetic heterogeneity when

evaluating nutritional effects and also nutritional recom-

mendations. The objective of the present review is to provide

a background and update on the current knowledge linking

nutrition to cognition and behaviour in children, and to show
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how the large collaborative European Project NUTRIMEN-

THE is working towards this aim.

Keywords Nutrition � Children � Mental performance �
Cognition � Brain assessment � Genetics

Abbreviations

AA Arachidonic acid

ADHD Attention-deficit hyperactivity

disorder

ALA Alpha-linolenic acid

aMRI Anatomical magnetic resonance

imaging

COMT Catechol-O-methyltransferase

DHA Docosahexaenoic acid

DNA Deoxyribonucleic acid

EEG Electroencephalogram

ELOVL Fatty acid elongase 5

ERG Electroretinogram

ERPs Event-related potentials

FADS Fatty acid desaturase

FFQ Food frequency questionnaire

fMRI Functional magnetic resonance

imaging

GWA Genome-wide association studies

HOTV Single letters that are presented to the

child using the Electronic Visual Acuity

System

IQ Intelligence quotient

LA Linoleic acid

LC-PUFA Long-chain polyunsaturated fatty acid

MRI Magnetic resonance imaging

mRNA Messenger ribonucleic acid

MTHFR Methylenetetrahydrofolate reductase

NUTRIMENTHE The Effect of Diet on the Mental

Performance of Children

PET Positron emission tomography

PUFA Polyunsaturated fatty acid

RNA Ribonucleic acid

T3 Triiodothyronine

T4 Thyroxine

Introduction

Cognitive performance and the increase in mental health

problems in children are of growing concern around the

world. In Europe, atypical cognitive development and

mental disorders, including anxiety, mood, and impulse-

control disorders, are estimated to affect around 35 % of

children, reducing their quality of life and leading to a

significant cost impact on society. Mental disorders

account for 8.1 % of the global burden of disease [1], and

therefore, there is an increased need for research into their

causes and consequences, and for the translation of this

knowledge to policies and preventive programmes [1].

Studies carried out in humans and experimental animals

demonstrate the crucial role of nutrition in neurodevelop-

ment. Providing better nutrition has the potential to be a

cost-effective approach in the prevention and management

of mental health problems, especially in relation to nutri-

ents such as essential fatty acids, iron, and zinc [1–3].

There is growing evidence that early nutrition can

influence later cognitive development and behaviour in

healthy children [4–6]. The idea that the diet of pregnant

women, infants, and children could have a long-term

influence on cognitive abilities has major implications for

public health practice and policy development.

NUTRIMENTHE is a large European research collab-

oration studying the effects of early nutrition on later

outcomes related to cognitive development (www.

nutrimenthe.eu). NUTRIMENTHE aims to provide new

knowledge on the cognitive performance of children

through studying the role, mechanisms, risks, and benefits

of specific nutrients and food components in neurodevel-

opment [7]. Due to the involvement of several large cohort

studies and the inclusion of targeted interventions, impor-

tant information will be generated, including quantification

of early nutrient effects on later cognitive and behavioural

development, such as attention, motivation, perception,

memory, and mood.

The aim of the present review is to provide the back-

ground and current knowledge linking nutrition to cogni-

tion and behaviour in children, and to show the

contribution to current knowledge of the large collabora-

tive European Project NUTRIMENTHE. It will highlight

where future work, to be carried out by NUTRIMENTHE,

will aim to fill the gaps identified in this review.

Nutrition and neurodevelopment

Nutrition plays an important role in supporting structural

and functional development of the human brain from

conception through childhood and adolescence and into

adulthood [8]. Brain development begins in the embryo and
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continues into post-natal life. During the phase of rapid

growth in the last trimester of gestation and the first 2 years

after birth, the brain is particularly vulnerable to an inad-

equate diet [9, 10]. During the first 4 years of life, the brain

reaches a weight of 1,200 g, which is only approximately

200 g less than that of an adult’s brain. For the next

10–15 years, growth continues, but it is not uniform across

the brain. For example, the thickness of the different

regions of the cerebral cortex changes between the ages of

5 and 18 years at different rates; cortical regions important

for reasoning, planning, and social communication appear

to mature last. Nutrients might serve as critical signals,

acting directly or via coupling mechanisms on ‘receptors’

in sensitive tissues [11]. Early events might have imme-

diate effects on structural and functional development of

the brain, and some nutrients are more likely to influence

brain development than others. As a result, the brain is

particularly sensitive to misprogramming due to its long

period of development and specialisation. The conse-

quences of early misprogramming of the brain will affect

not only its structure and function, but will also impact on

other body functions. For example, the brain is involved in

the control of endocrine and inflammatory signalling from

different ‘brain–body axis’, regulating all metabolic pro-

cesses involved in growth and development. The implica-

tions of the lack of certain nutrient(s) will depend on the

stage of development at which the deficiency occurs, the

degree of deficiency, and the duration of reduced supply.

Prenatal nutrition and neurodevelopment

The prenatal period is divided into three stages: the con-

ceptual or germinal period, the embryonic period, and the

foetal period [12]. Brain development begins 18 days after

fertilisation, and it is one of the slowest organs to develop,

continuing that process for many years after birth. Post-

natal health may be influenced by prenatal factors, in line

with the developmental origins of adult health hypothesis

[13, 14], which states that the environment experienced

during the individual’s pre- and post-natal life ‘pro-

grammes’ the functional capacity of the individual’s

organs, with a subsequent effect on the individual’s health.

In order to establish the potential effects of nutrition, the

development occurring at a particular time point in dif-

ferent areas of the brain must be taken into account [15].

It is well known that nutrients are vital to brain devel-

opment, not only for morphological development, but also

for brain neurochemistry and neurophysiology. During late

foetal and early neonatal life periods, regions such as the

hippocampus, the visual and auditory cortices, and the

striatum undergo rapid development characterised by the

morphogenesis and synaptogenesis that make them func-

tional [16, 17].

When considering cognitive development, there are

sensitive and critical stages of development during which

environmental conditions, such as diet, can have a long-

lasting influence. For any given region, early malnutrition

has an effect on cell proliferation, thereby affecting cell

number [16, 17]. For example, neonatal malnutrition can

affect the volume and width of the cerebral cortex [18].

Neurochemical alterations include changes in neurotrans-

mitter synthesis, receptor synthesis, and neurotransmitter

reuptake mechanisms [19, 20]. Neurophysiologic changes

reflect changes in metabolism and signal propagation. For

instance, a dietary deficiency at a critical stage of devel-

opment can result in permanent changes in brain structure

and, therefore, cognitive functioning [21]. This means that

both the diet of the mother during pregnancy and the diet of

the infant in the perinatal period can have long-term con-

sequences [22]. As the brain develops rapidly during

pregnancy, poor nutritional intake can hinder the proper

development of important brain structures [11]. Findings

from the Dutch famine studies, for example, have shown

that famine exposure during gestation had lasting negative

consequences for the offspring’s mental health [4, 23]. In

animal studies, prenatal exposure to protein-calorie mal-

nutrition is associated with neurotransmitter, cellular,

electrophysiological, and behavioural disruptions similar to

those found in patients with schizophrenia [24, 25].

Copper is an essential divalent cation for proteins

involved in brain energy metabolism, dopamine metabo-

lism, antioxidant activity, and iron accretion in the foetal

and neonatal brain [26]. Micronutrients play a determinant

role in the development of brain substrates for cognition. A

deficiency of various micronutrients can have long-term

implications for cognitive development in humans [9].

Vitamin A plays a key role in visual perception, and its

deficiency is the leading cause of childhood blindness. It is

also of particular importance during periods of rapid

growth, both during pregnancy and in early childhood [9,

27]. Retinoic acid, a vitamin A derivate, has been shown to

affect different molecular signalling pathways in the

developing brain by regulating expression of several genes

and promoting cell differentiation, making it important for

the regulation of neurodevelopment [28]. Retinoic acid

signalling has also been shown to be important for devel-

opment for striatal functional pathways, which are involved

in dopamine-regulated cognitive and motor activity [29]. In

a recent study, thiamine deficiency during the first year of

life was found to affect children’s abilities selectively,

yielding specific impairments in the language domains of

syntax and lexical retrieval, but without affecting concep-

tual or general cognitive deficits [30].

The role of folate in early pregnancy in the prevention of

neural tube defects is well established, and it is also fun-

damental for brain development due to its participation in
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nucleotide synthesis, methylation processes, DNA integ-

rity, and transcription [31]. Folates seem to have an effect

on memory [32] and in conditions such as schizophrenia

[33] and depression [34]. Systematic reviews and meta-

analysis have shown that supplementation during preg-

nancy with a multivitamin containing folic acid does not

result in a benefit to mental performance in children [35].

However, NUTRIMENTHE researchers have shown that

low maternal folate status during early pregnancy is asso-

ciated with increased risk of internalising (mood instability,

obsessions, somatic problems, nervousness, insecurity,

fears, phobias, sadness, apathy, dysphoria, restlessness,

tension, worry, and guilt) and externalising (disruptive

behaviours, irritability, impulsiveness, aggressiveness, and

inattention) problems in young children [36, 37]. Cohort

studies have shown that folate-supplemented mothers have

children with fewer behavioural problems at 18 months of

age [36], improved scores on verbal, verbal-executive

functions, social competence, and attention measures at

4 years [38], and reduced hyperactivity and peer problems

at 8 years [39].

Choline is required for the formation of all membranes,

including grey and white matter phospholipids, with higher

demands during growth [40–42]. Moreover, it influences

DNA methylation, as it is a major dietary methyl donor

(via betaine), thus having role in epigenetic mechanisms.

Choline, folate, and homocysteine metabolism is closely

interrelated, and the pathways for the metabolism of these

nutrients intersect at the formation of methionine from

homocysteine [41]. The developing central nervous system

is particularly sensitive to choline availability with evi-

dence that low choline availability leads to poor brain

development and long-term cognitive and behavioural

impairments in rodents [40, 41]. In pregnant women con-

suming a diet deficient in choline, increased incidence of

neural tube defects and orofacial cleft defects in infants has

been reported [40, 41]. Studies on adults have reported

better cognitive function in those eating diets higher in

choline [43], but adequately powered studies to determine

whether choline nutrition during pregnancy enhances brain

development, especially memory, in infants are lacking

[42].

A lack of iodine and/or thyroid hormone, at the end of

the first trimester and the early part of the second trimester

of gestation, is associated with reduced intellectual ability

and will result in irreversible abnormalities in brain

development [44, 45]. Van Mil et al. [46] as part of NU-

TRIMENTHE (Generation R study), have shown that low

maternal urinary iodine during early pregnancy is associ-

ated with impaired executive functioning of the child [14,

46]. Also in NUTRIMENTHE, Bath et al. [47] (ALSPAC

study) showed that inadequate iodine status during early

pregnancy is adversely associated with child cognitive

development at 8 years. Further studies are needed, how-

ever, to demonstrate whether these children are more vul-

nerable to developing later clinical disorders or sustained

cognitive impairment.

Zinc is also important as it plays a central role in the

growth of cells. It can be found at high levels in the brain

where it has both structural and functional tasks and it is

essential both before and after birth for normal cognitive

development [48, 49].

Iron deficiency during early life can also have an

adverse effect on brain development. Very low prenatal

levels of iron can induce changes in the myelination of

neurons and in dopamine metabolism, which can persist if

there is a deficiency of iron during the neonatal period [9,

50]. A recent systematic review of studies examining the

influence of prenatal iron supplementation of pregnant

women showed modest effects on psychomotor develop-

ment of their children but no effect on their mental

development or behaviour [51]. However, other studies

have shown that perinatal iron deficiency produced an

altered neurochemical profile of the developing hippo-

campus in children [52]. Another recent systematic review

about iron supplementation in infants, children, and ado-

lescents did not show any effects on either the IQ or

behavioural status of their children; a higher incidence of

children with teacher-rated peer problems at school was

observed [53].

The n-3 fatty acid docosahexaenoic acid (DHA) and

the n-6 fatty acid arachidonic acid (AA) are the major

long-chain polyunsaturated fatty acids (LC-PUFAs). Brain

accumulation of DHA starts in utero, with quantitatively

marked deposition in the second half of gestation [54, 55]

coinciding with the growth spurt in the grey matter. LC-

PUFA supply to the foetus by the mother is mediated by

maternal–foetal placental transfer during pregnancy, and

breast milk provides fatty acids to infants after birth [56].

Higher maternal intake of DHA results in higher maternal

plasma levels and thereby increased DHA transfer to the

foetus [57]. Reduced DHA has been associated with

dysfunctions in cognitive and behavioural performance in

newborns [58]. Studies analysing the effect of prenatal

LC-PUFA status or prenatal LC-PUFA supplementation

indicate that an enhanced prenatal AA and DHA status

might be related to improved neurodevelopmental out-

comes until at least 18 months of age [59] and that later

psychomotor development [60] and cognitive function in

children may also benefit [61]. Hermoso et al. also con-

cluded that maternal intake of very-long-chain n-3 PUFAs

during pregnancy and lactation may be favourable for

later mental development of children [62]. Nevertheless,

recent reviews and meta-analysis of randomised clinical

trials (RCTs) conclude that there is no clear long-term

benefit of LC-PUFA supplementation during pregnancy
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and/or lactation on child’s neurodevelopment [63–65].

More adequately, powered studies of high methodological

quality are clearly needed in this area, including large

well-designed studies in humans, investigating the effects

of early nutrition (including maternal supplementation

during pregnancy) on child’s neurodevelopment and

health. The NUHEAL study [57] of the NUTRIMENTHE

project is analysing long-term effects of LC-PUFAs and/

or 5-MTHF supplementation on cognitive and behavioural

outcomes in children up to the age of 9.5 years. This is a

unique approach as the children have been assessed using

the same battery of neuropsychological tests and have

been followed up until the age of 9.5 years, which will

hopefully clarify some aspects of the long-term effects of

maternal fatty acid and/or folate supplementation on

mental development in childhood. Furthermore, neurode-

velopment outcomes of more than 1,000 children from

eight different European countries have been examined

within the NUTRIMENTHE project, using a neuropsy-

chological battery specifically designed and translated into

eight European languages for this purpose.

Infant and childhood nutrition and brain development

and behaviour

Nutrition is one of many factors that affect brain devel-

opment. As the brain continues to develop during child-

hood and adolescence, diet is likely to have an impact on

cognitive ability and behaviour [44]. Meeting the nutri-

tional demands for certain micronutrients is likely to have

beneficial effects on cognitive development in school

children [66–68]. Moreover, most evidence reported for

iron, iodine, vitamin A, and zinc supplementation indicates

that combined supplementation may have a greater effect

on certain outcomes than supplementation with a single

micronutrient [69].

Iodine deficiency can affect cognitive performance and

development due to the broad impact of hypothyroidism on

neuronal structure and function. Cross-sectional studies

have shown that iodine deficiency has a negative effect on

the cognitive performance of children, which was subse-

quently improved by iodine supplementation [70]. Ran-

domised intervention studies with iodine in school-aged

children have found evidence for enhanced cognitive per-

formance, but these improvements were probably limited

to those children showing previous iodine deficiency [44].

Increasing evidence seems to indicate that low iron

status adversely influences psychological functioning as a

consequence of decreased activity of iron-containing

enzymes in the brain, in addition to reduced haemoglobin

synthesis [9]. Many studies have been carried out on how

iron deficiency affects children [50, 67, 71]. It appears that

the timing of iron deficiency is of crucial importance; if it

occurs during the first 6 or 12 months of life, the adverse

effects on cognitive performance are likely to persist, even

if iron intake subsequently achieves the recommended

levels [72, 73]. It has been reported that iron deficiency

during early infancy can affect the development of auditory

processing and executive control and contribute to a higher

incidence of behavioural problems and poor scholastic

achievements [72]. Also, a systematic review and meta-

analysis conducted by Falkingham et al. [74] have found

some evidence that iron supplementation can improve

attention and concentration in adolescents of baseline level

of iron status. Nonetheless, further studies are needed as

suggested by a recent systematic review of randomised

controlled trials. This review, carried out by the NUTRI-

MENTHE team, concluded that the limited evidence

available suggests that iron supplementation in infants may

influence positively children’s psychomotor development

(Psychomotor Development Index), whereas it does not

seem to alter their development or behaviour [51]. Similar

conclusions were drawn in a systematic review recently

performed as part of the EU-funded EURRECA project

[53].

Zinc deficiency in children has been associated with

reduced cognitive and motor performance [44], and with

higher incidence of depression and ADHD [75]. Even

though the exact mechanisms are not clear, it seems that

zinc is essential for neurogenesis, neuronal migration, and

synaptogenesis, and its deficiency could interfere with

neurotransmission and subsequent behaviour [76].

The association between B vitamins, especially folate,

and cognitive performance has also been investigated

[77]. A recent study demonstrated a positive association

between folate intake and academic achievements in

15-year-old school children, independent of socio-eco-

nomic status and income of parents [78]. Vitamin B12

deficiency has also been shown to affect school perfor-

mance of children aged 9–11 years [79]. The role of B

vitamins on neural function in preschool children is being

assessed in a double-blind randomised clinical trial as

part of NUTRIMENTHE, the SIMBA trial

(NCT00811291).

Protein deprivation can cause direct deleterious effects

on the brain, such as reduced brain weight, altered hippo-

campal formation, impairment of neurotransmitter systems,

and changes in protein phosphorylation [80]. Undernour-

ished children (under 3 years of age) usually have delayed

development, impaired behaviour, and lower school

achievement, and supplementation studies have shown

benefits on their development [81]. Currently, the effect of

different protein intakes during the first 12 months of life

on cognitive development and behaviour in boys and girls

at 8.5 years is being analysed in NUTRIMENTHE (CHOP

study) [82].

Eur J Nutr

123



Choline has been shown to be an important nutrient

during the early-post-natal period because, via epigenetic

mechanisms, it has been shown to play an important role in

the development and health outcomes later in life [41].

Mature human milk contains large amounts of choline, and

the differences in choline composition (and bioavailability)

between human milk and formulas appear to unfavourably

affect the choline status in neonates [83]. Studies on

rodents demonstrate that increased choline exposure during

the prenatal period beneficially affects cognitive function

[40]. Whether these findings are applicable to humans has

yet to be investigated.

In relation to fatty acids, both omega-3 and omega-6

polyunsaturated fatty acids (PUFAs) have been associated

with many health benefits and may also be relevant for the

development of attention and problem-solving abilities

[84]. Furthermore, fatty acid metabolism may be impli-

cated in a cluster of neurodevelopmental disorders,

including ADHD, dyslexia, dyspraxia, and the autistic

spectrum [85]. It has been reported repeatedly that

breastfed children attain higher intelligence quotient (IQ)

scores than non-breastfed children. The fatty acids pro-

vided in breast milk are thought to play a crucial role in this

respect [86]. In the ALSPAC study, researchers have

observed that high maternal seafood consumption (more

than 340 g per week) in pregnancy had beneficial effects

on child development [87]. Breastfeeding is associated

with advantages for child cognition [88–90] and infant

temperament [91]. Kafouri et al. [92] have shown that the

duration of breastfeeding is associated with cortical thick-

ness, as assessed with magnetic resonance imaging in

typically developing adolescents. A recent review indicated

that neurodevelopment and cognitive abilities can be

enhanced by early provision of n-3 LC-PUFAs through

breast milk or DHA-fortified foods [64]. It is possible,

however, that there is an optimum level of DHA below and

above which DHA might be detrimental to the developing

brain, and therefore, this suggests that further evidence is

needed on long-term beneficial or harmful effect of LC-

PUFA supplementation on neurodevelopment in term

infants [64]. With respect to visual development, the

European Food Safety Authority has confirmed that there is

conclusive evidence for a causal relationship between the

provision of DHA (in a proportion of at least 0.3 % of

dietary fat in infancy) and improved visual function at the

age of 1 year [93]. Nevertheless, recent reviews conclude

that despite the numerous well-designed studies, there is

still no clear and consistent benefit of LC-PUFA supple-

mentation on child’s neurodevelopment [64, 94]. Within

NUTRIMENTHE project, a multicentric double-blind,

randomised clinical trial of phenylketonuric patients (age-

ing 7–12 years) is ongoing. As these patients have a pro-

tein-restricted diet (but still accomplishing the minimal

recommended protein intakes without eating fish), this is an

excellent model for studying the influence of n-3 LC-PUFA

intake on the cognitive and mental performance in child-

hood and to establish the quantitative requirements for

children within the general population.

Methodological approaches to assess cognitive

development, nutritional status, body composition,

and physical activity

Neuropsychological development assessment

Cognitive function is a term used to describe several pro-

cesses and functions, including the domains of language,

memory, motor, perception, attention, and executive

functions [95]. These abilities are not easy to measure even

when using validated tests. For example, memory is a very

complex set of processes (e.g. short-term, long-term,

visual, spatial, verbal, declarative, semantic, and strategic),

and each domain needs to be investigated using different

assessment tools [96]. In the past, the most common cog-

nitive outcome measure in nutrition studies has been

intelligence quotient (IQ).

There have been many studies investigating the effect

of nutritional intervention on cognitive performance in

children. However, most have methodological problems

[97, 98]. The first concern is related to the sensitivity of

the neuropsychological tests to measure changes in cog-

nitive performance, which might be related to nutritional

change. This is because neuropsychological development

is a heterogeneous process in which there are several

critical periods involved [98]. The first brain regions to

mature are those involved in visuo-motor balance and

motor performance. Later, the regions involved in learn-

ing, memory, and language mature. Finally, it appears that

cortical regions involved in cognitive control (prefrontal

cortex) and social cognition (lateral temporal cortex)

reach full maturity last. The effects of nutrition on cog-

nitive performance may depend on the maturation stage at

which the nutritional change happens, although one can-

not rule out the possibility of delayed effects of early

nutrition on the structure or function of the brain, only

after it has reached full maturity. In addition, the neuro-

psychological tests need to assess specific neuropsycho-

logical domains (perceptual, motor, attention, learning and

memory, and executive functions) instead of global cog-

nitive performance, in order to detect which domain is

affected [84, 99].

Another factor to be considered is the practice/learning

effect [99]. When a neuropsychological procedure is going

to be applied more than once, control of practice/learning

effects is essential, especially if the intention is to test some

improvement after a nutritional intervention [100]. All of
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these suggest that any one test is not enough to detect

significant changes in brain development because of a

specific nutrient supplementation. Therefore, each study

should have carefully designed, specific neuropsychologi-

cal tools combining different neuropsychological domains

to evaluate the potential effect of a nutrient, always taking

into account the biological mechanism involved in the

specific nutrient effect that is explored. In fact, the best

approach seems to be the use of a battery of neuropsy-

chological tests to assess a variety of cognitive domains at

the same time [15].

The NUTRIMENTHE project has designed a harmo-

nised neuropsychological protocol available in different

languages, taking into account cultural differences between

the different participating countries (see Table 1). This

cross-cultural neuropsychological battery for cognitive

assessment in EU children has been specifically designed

to measure long-term effects of nutrition on cognitive

development during childhood. This battery is currently

being used in the studies of NUTRIMENTHE that have

collected new data and is an important tool to provide

comparable methodology for cognitive assessment in

European children.

Imaging techniques

A deficiency in one or more nutrients in the diet can disrupt

the biochemical and morphological organisation of the

brain, which is usually followed by repercussions on its

function. Neurobehavioural assessments can be performed

giving researchers an insight into brain structure and

function [26]. It has been suggested that recent advances in

neuroimaging methods have provided new ways of solving

the complex interplay between genetic and environmental

factors that influence brain development during the critical

first years of life [101].

A number of techniques are available for the assessment

of nutrition-related variations in brain structure and func-

tion (see Table 2). With the exception of positron emission

tomography (PET), it is possible to apply all of the meth-

ods mentioned from childhood onward. For example,

overall and regional brain volumes, as well as cortical

thickness and white matter microstructure, can be mea-

sured by anatomical magnetic resonance imaging (MRI)

scans; objective metrics of brain electrical function can be

obtained by electroencephalogram (EEG), or evoked

potentials (EP) and event-related potentials (ERPs) [102].

Table 1 NUTRIMENTHE neuropsychological battery

Domain Function Tests

Perception Visuo-perceptual

integration

HVOT

Motor Visuo-motor

coordination

Grooved pegboard test (GPT)

Attention Spatial Cancellation test (Woodcook-

Muñoz)

Sustained and

focused

CPT

Memory Visual episodic

memory

Recall of objects test (British

ability scale)

Auditory memory Auditory memory of Rey

Language Semantic fluency Animal-FAS

Verbal

comprehension

NEPSY’s token test

Executive

function

Update Reversal digits (W-M)

Matrix analogies (K-ABC II)

Comprehensive trail making

test (CTMT)

Impulsivity/

inhibition

Go/no-go

Stroop (five digit test) (1–3rd

condition)

Decision-making Hungry donkey test (HDT)

Processing

speed

Symbol digit modality test

Table 2 Methodologies to explore brain development

Neuropsychological tests’ study of different domains to assess:

Intelligence and mental performance

Psychomotor development

Behaviour maturation

Electrophysiological recording visual and auditory acuity

Sweep VEP

Transient flash VEP

Pattern-reversal stimuli VEP

Steady-state VEP

HVOT visual acuity

Sonksen–Silver acuity system

Teller acuity cards

Scotopic ERG

EEG

EEG/ERP

Neuroimaging brain structure and function

aMRI

fMRI

MEG

PET

aMRI = anatomical magnetic resonance imaging, EEG = electro-

encephalography, ERG = electroretinogram, ERP = event-related

potentials, fMRI = functional magnetic resonance imaging,

HVOT = single letters that are presented to the child using the

Electronic Visual Acuity System [175–177], MEG = magnetoen-

cephalography, PET = positron emission tomography, VEP = visual

evoked potential
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An EP or ERP is any stereotyped electrophysiological

response to an internal or external stimulus. ERPs can be

reliably measured using EEG, a method that measures

electrical activity of the brain (the synchronised electrical

signal from a large number of neurons) through the skull

and scalp. Measuring differences in EEG, averaged across

many trials, allows researchers to study changes in brain

activity in response to stimuli [103].

Another available technology in neuroscience is func-

tional magnetic resonance imaging (fMRI), a technique for

measuring brain activity. It works by detecting the change in

blood oxygenation levels that occur during neural activity.

Detailed three-dimensional ‘pictures’ of the brain are cre-

ated, each consisting of thousands of three-dimensional

image elements named voxels [8]. Functional MRI can be

used to produce activation maps showing which parts of the

brain are involved in a particular cognitive process.

In summary, the timing of a number of cognitive pro-

cesses can be obtained using electrophysiological mea-

surements, whereas functional magnetic resonance imaging

provides insight into the location of regions associated with

a specific cognitive task [8]. All these non-invasive meth-

ods for measuring brain activity during cognitive process-

ing hold promise for identifying the neural subprocesses

involved in complex cognitive, motor, or perceptual tasks.

They can be time-linked to the stimulus onset (e.g. the

presentation of a word, a sound, or an image) and have

been used in infants and children with some success [104].

A number of MRI studies have been designed and con-

ducted in typically developing children and adolescents

[105]. MRI is also being used in Generation R, a pro-

spective cohort study from foetal life until young adulthood

in a multi-ethnic urban population in the Netherlands [106],

which is also taking part in the NUTRIMENTHE project.

The study was designed to identify early environmental

and genetic causes of normal and abnormal growth,

development, and health from foetal life until young

adulthood. In total, 9,778 mothers were enrolled in the

study and extensive data have been collected during

pregnancy, and the children are being followed at set ages

after birth. Researchers of this study are now working to

obtain advanced brain (including structural and functional

MRI) data in all children of 6 years of age and older. This

will generate an important and unique contribution to the

already impressive Generation R project.

The EEG/ERP technique is also being used in NUTRI-

MENTHE as part of the NUHEAL study in three different

countries. Preliminary results indicate that children born to

mothers supplemented with 5-MTHF, when presented with

the working memory (WM) task, were able to solve it more

quickly and appeared to need fewer control resources in

general, and specifically less involvement of the key nodes

of an ‘executive network’, such as the dorsolateral

prefrontal cortex, to solve the task, compared to children

not exposed to added folate. In conclusion, children born to

mothers supplemented with 5-MTHF during pregnancy

performed the WM task more quickly, with less involve-

ment of the control areas of the brain, than those whose

mothers did not receive 5-MTHF during pregnancy.

Dietary intakes and eating behaviours

There are several methods that can be used to assess dietary

intake in groups of individuals, and in NUTRIMENTHE

two different methods have been used to maximise the

range of data collected. Food frequency questionnaires

(FFQs) designed to assess habitual diet by asking about the

frequency with which food items or specific food groups

are consumed over a reference period (e.g. 6 months or a

year) have been used [107, 108]. These have been partic-

ularly important in assessing the diet of the women in

pregnancy and have been used by NUTRIMENTHE part-

ners to show that the eating of fish by the mother in

pregnancy is associated with better visual and cognitive

outcomes in their children [87, 109]. The use of FFQs has

some advantages; since responses are standardised, dietary

data on a large number of people can be collected and

analysed economically. FFQs can be used to identify pat-

terns of food intake using statistical methods such as

principal component analysis [110] and cluster analysis

[111], and these may be associated with inadequate intakes

of specific nutrients and with the outcomes being studied.

When using FFQs to assess diet, however, there is a lack of

detail about the food consumed because subjects can only

answer the questions as given and they may not fit well

with the diet actually eaten and there is no assessment of

how and when food is eaten. For FFQs to work well, they

need to be designed specifically for, and tested in, the

population and age group being assessed and, if being used

across countries, need to be carefully adapted to the food

habits of each country. These aspects need input from

experienced nutritionists in each country, and this can often

be neglected leading to unsatisfactory assessment of diet.

The second method used when assessing the diets of

NUTRIMENTHE children is the collection of diet diary

records of food and drink at the time of consumption.

Parents are provided with a structured diary and an

explanation, either on paper or in person, of how to com-

plete the record. Typically, they complete the food diary

(for 3 or more days) on behalf of the child and bring it with

them to a clinic where the child is weighed and measured,

and a short interview with a nutritionist is used to obtain

extra information about the foods. This allows maximum

flexibility in the description of food eaten, provides meal

timings and information about food left over by the child.

Turning this information into meaningful computerised
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data is, however, time-consuming and requires trained staff

with an understanding of nutrition and the local diet. If a

reasonable number of individuals (50 or more) are asses-

sed, the data collected by this method can be extremely

valuable because they can be analysed in a variety of ways

that do not necessarily need to be prespecified, so that

research questions that arise during a project can be fol-

lowed up relatively easily.

In NUTRIMENTHE a dynamic diet working group has

been set up, where nutritional expertise is shared between

studies, maximising the effectiveness of the dietary data

collections in the different studies. The diet working group

has investigated ways of improving comparability between

diets eaten in different countries, where food habits are

different, and the use of a common categorisation of food

groups for the analysis is planned. Having harmonised the

way in which food groups are defined, their contribution to

the diet and their relationship with mental development and

performance will be assessed. Furthermore, the food

groups will be used in dietary pattern analysis (see above),

and their relationship with the outcomes will be assessed.

The use of food groups in this way will mean that the fact

that different nutrient databases have been used in different

countries is much less important and, because the public

understands health messages about food more easily than

messages about nutrients, it will facilitate the communi-

cation of any findings.

Assessment of anthropometry and body composition

Body size and composition are clearly affected by nutrition,

and in turn, body characteristics may affect cognition and

mental health. Head circumference has been related to the

size of the brain [112]. In preterm and low-birthweight

infants, head circumference has been associated with cog-

nitive performance [112–115]. The first year of life is the

period when the brain and the head grow the most [116, 117].

Therefore, this might be the period during which head

measurement could be an indicator for later cognitive per-

formance. There are no large multicentre studies studying

the relationship between head circumference, growth

velocity during the first months of life, and later cognitive

performance. NUTRIMENTHE aims to fill that gap.

Other aspects of child’s body size and composition

could be related to cognition and mental health. One of the

most important might be overweight and obesity. Obesity

could influence psychosocial problems such as poor self-

esteem, depression, and eating disorders [118–120]. A

recent review examining 12 studies that explored the

connection between maternal obesity and cognitive,

behavioural, and emotional problems in the offspring

concluded that the offspring of obese women may be at

increased risk of behavioural and cognitive deficits in

childhood, as well as eating disorders in adolescence and

psychotic disorders in adulthood [121]. Childhood over-

weight and obesity could be related to cognitive perfor-

mance as it has been shown to be related to executive

functions. In children, there is preliminary evidence of a

relationship between obesity and deficits in attention and

shifting (the ability that the child has to redirect the focus

of attention) [122] and deficits in the inhibitory control

component [123]. Overweight adolescents have also shown

emotion-driven impulsivity and cognitive inflexibility

[124, 125]. It is possible that an impulsive child may not

inhibit their intake of food, which may lead to weight gain

and psychosocial problems.

The NUTRIMENTHE project aims to relate the differ-

ent aspects of body size and composition with cognition

and mental health, taking into account other possible fac-

tors such as socio-economic status, physical activity and/or

inactivity, and maternal mental health. To achieve this goal

in the NUTRIMENTHE cohorts, children have been mea-

sured from birth at various ages, following standard oper-

ating procedures (WHO recommendations, based in

Lohman standards) [126, 127]. This longitudinal, multi-

centre approach will provide important evidence about the

relationship between body characteristics and mental

performance.

Assessment of physical activity

Physical activity is a factor that influences nutritional status

and brain function. Human and animal studies have shown

that aerobic exercise can improve different aspects of

cognition, brain function, and mental health both in chil-

dren and in adults [128–130]. Thus, accurate measurement

of physical activity is a prerequisite for monitoring popu-

lation health and for evaluating effective interventions

[131]. There are various methods for measuring physical

activity in large-scale epidemiological studies. These

methods can be classified as objective methods (using

monitors) and self-report methods (using questionnaires or

interviews). The first can provide reasonably accurate

quantitative measures of physical activity, and the second

can be used to obtain qualitative data and to rank indi-

viduals into different levels of physical activity. To obtain

the best-quality data, a combination of both types of

method is recommended [132, 133]. Heart rate can also be

monitored using a portable heart rate recorder, and together

with the use of an activity diary in which the subjects

record their activities, it is possible to get a relatively

complete view of the physical activity carried out [134].

Accelerometry-based monitors are the most widely used

objective techniques to assess physical activity in children

[135]. Several accelerometers have been validated for use

in children, although they still have some limitations [136].
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In the NUTRIMENTHE project, the Armband Sense Wear

(Bodymedia), a multisensor that combines accelerometry

and heat-flux sensors, is being used to objectively monitor

physical activity over a 24-h period. The data obtained can

be used to estimate energy expenditure using validated

algorithms for children [137]. The information recorded

through the armband monitor is combined with information

collected through validated physical activity questionnaires

[138, 139] and records of screen activities (TV-viewing,

computer, and video games). Within NUTRIMENTHE

(NUHEAL and CHOP studies), all this valuable informa-

tion is collected from the participating children in different

European countries and will be used to assess the rela-

tionships between physical activity and cognitive behav-

iour and development. This project will significantly

contribute to the existing literature by comprehensively

exploring how children with different physical activity

levels, objectively measured, differ in relevant cognitive

and neurodevelopmental factors, as well as in brain struc-

ture and function. In addition, due to the longitudinal

dimension of this project, we will be able to examine

whether maternal lifestyle factors might have a program-

ming effect on their offspring’s physical activity levels.

Genetic factors influencing nutrition

and neurodevelopment

Genetics

The human genome project has brought forth a wealth of

information on the structure of the genome and increased

our understanding of how the interplay between our genes

and nutrition relates to a state of health or disease, i.e.

nutrigenetics.

The tissue composition of PUFAs is important to child’s

neurodevelopment and depends on both dietary intake and

metabolism, controlled by genetic polymorphisms as

shown by recent studies. The delta-5 and delta-6 desaturase

enzymes, encoded by the FADS1 and FADS2 genes, play

important roles in PUFA metabolism and can influence

PUFA and LC-PUFA tissue availability, as shown by

NUTRIMENTHE collaborators [140–146]. FADS gene

variants account up to 28.5 % of the variability in the

PUFA and LC-PUFA levels in human tissues [147, 148].

Therefore, blood and tissue levels of the essential fatty

acids LA and ALA and of their biologically active LC-

PUFA derivatives are influenced not only by diet, but to a

large extent also by genetic variation.

The first study demonstrating a favourable effect of a

genetic variant on IQ in breastfed children was conducted

by Caspi et al. [149], where a marked IQ advantage for

breastfed children carrying the common FADS2 rs174575

C allele was shown, over children not breastfed. In minor G

allele carriers, breastfeeding had no influence on IQ [149].

A further study conducted by NUTRIMENTHE research-

ers also demonstrated that these two FADS2 variants sig-

nificantly altered the effect of post-natal breastfeeding on

the intelligence quotient achieved at age 8, where children

carrying rs174575 GG had the lowest average IQs amongst

formula-fed children, but when breastfed, their scores were

similar to CC and CG children [150]. Additionally, a recent

study on FADS gene cluster and the ELOVL gene family

(involved in the elongation of LC-PUFAs) concluded that

genetically determined maternal supplies of LC-PUFAs

during pregnancy and lactation influence infant brain

development and that breastfeeding effects on cognition

are modified by child genetic variation [88]. Also, an

association between apolipoprotein E isoforms and neuro-

nal/brain development in infants has been shown [151].

Another interesting pathway in nutrigenetics effects is

the folate-mediated one-carbon metabolism, where two

cycles are intertwining and competing for folate cofactors:

DNA biosynthesis and methylation cycle [152]. Folate

(vitamin B9) participates in one-carbon biosynthetic and

epigenetic processes that facilitate the synthesis and

methylation of nucleic acids and proteins. Several varia-

tions have been identified in genes involved in the folate

absorption and folate-mediated one-carbon metabolism

[153], where MTHFR 677 C/T seems to be the most

important in terms of prevalence and impact [154].

MTHFR enzyme regulates folate availability, and the 677

TT genotype is associated with 60 % reduced enzyme

activity, which results in the accumulation of homocysteine

and impaired methylation reactions [155]. The maternal

MTHFR 677 T allele has been reported as an independent

predictor of poorer child neurodevelopment at 24 months

of age, whereas child’s MTHFR 677 C/T genotypes did not

associate with child neurodevelopment [156]. Also, poly-

morphisms in genes involved in choline production have an

effect on one-carbon metabolism [41]. Common poly-

morphisms in PEMT gene promoter region (rs12325817),

MTHFD1 gene (1958 G/A), and CHDH gene (432 G/T)

result in metabolic inefficiencies in choline metabolism;

thus, more choline is needed as a methyl donor to replace

missing methyltetrahydrofolate [41, 42].

These results refer to the effect of maternal–foetal

metabolism of folate that maternal genetic variation in

folate metabolism during pregnancy may programme off-

spring neurodevelopment trajectories [156].

In a recent study, maternal gene variants MTHFR 677

TT (rs1801133 C/T), CBS rs2234715 GT ? TT, and

COMT AA (rs4680 G/A) were associated with mental

disorder and with greater autism risk in children in the

absence of periconceptional prenatal vitamin supplemen-

tation, which is known to confer less efficient one-carbon

metabolism and thus higher homocysteine levels [157].
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In conclusion, in order to obtain adequate understanding

of the effect of nutrition on childhood neurodevelopment,

future research should take into account genetic variation.

This is particularly important when studying the key

enzymes of LC-PUFA synthesis and folate-mediated one-

carbon metabolism, and NUTRIMENTHE focuses on

interactions between nutrition and genetic variation in

genes related to fatty acid and folate metabolism in

mothers and children with respect to neurodevelopment of

children.

Omics

Diet is one of the most important environmental factors

interacting with the genome to modulate disease risk [158].

Nutrigenomics offers a powerful approach to unravel the

effects of nutrition on health in different levels by

employing high-throughput genomics technologies [159]

(see Fig. 1). Genome-wide association studies (GWAs),

gene and protein expression analyses (transcriptome and

proteome, respectively), organisation and modification of

the chromatin structure (epigenome), as well as metabolite

patterns (metabolome) bear great potential to gain better

insights into the complexity of biological systems [160].

Recent GWA studies provide further evidence for the

importance of the FADS gene cluster variation in PUFA

metabolism [148, 161, 162]. Nutrigenomics studies on the

regulation of genome, proteome, and metabolome by

nutrients in humans are still limited, partly because it is a

relatively new field and partly because of the high cost of

genomics technologies [160]. Nevertheless, the few studies

on humans published so far clearly indicate that changes in

dietary fatty acids intake and composition can have an

effect on cellular adaptive response capacity by gene

transcription changes [160].

With the growing use of novel techniques, the knowl-

edge of nutrient–gene/genome interactions will increase

substantially. It will be for future studies to confirm and

identify new genetic players that influence nutrient status in

the human body with a possible effect on mental devel-

opment. A novel aspect of the NUTRIMENTHE project is

the assessment of metabolomics from child’s urine samples

and from blood samples. Changes in the metabolome are

the ultimate answer of an organism to genetic variation,

disease, or environmental influences; the metabolome is,

therefore, most predictive of phenotype. Within NUTRI-

MENTHE, the key metabolites, e.g. amino acids, hormones

(e.g. insulin, leptin), and status markers (phospholipid fatty

acids), are being measured in infants and children, which

will provide a comprehensive picture of the influence of

early diet on child’s nutritional status, metabolism, and

brain structure and function.

Epigenetics

Unlike genetic information, which is very stable, epige-

netic events are reversible and respond to endogenous and

exogenous (environmental) signals [163]. The term ‘epi-

genetics’ refers to chromatin modifications that result in

altered gene expression without changes in the DNA

sequence itself [164]. Several epigenetic mechanisms

have been described, including short RNA molecules

Fig. 1 Diet effects on cell. ‘Omics’ techniques for studying different levels such as genome, epigenome, transcriptome, proteome, and

metabolome are indicated
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(microRNAs), which bind to mRNA and thus modify gene

expression [165], and DNA methylation and post-transla-

tional modifications of nucleosomal histones resulting in

either up- or down-regulation of gene transcription [163].

Epigenetic markers serve as a memory of early-life expo-

sure to inappropriate environments (nutritional, social) by

long-term modifications of gene expression programming

[166]. Research in developmental and behavioural neuro-

science is providing growing evidence that the epigenome

is exquisitely sensitive to environmental influences and

thus influences cognitive health and risk for psychopa-

thology throughout the lifespan [167].

Epigenetic ‘misprogramming’ during development is

believed to have a persistent effect on offspring health and

may even be transmitted to the next generation [168]. The

Dutch Hunger Winter (1944–1945) [169] and the Chinese

Famine (1959–1960) [170] demonstrate two extreme

examples of how epigenetic effects triggered by extreme

intrauterine nutritional deficiency may increase the risk of

health problems in children, including impaired mental

health. Dietary factors, including one-carbon metabolism

pathway along with folate and other vitamins, play an

important role in DNA synthesis and in the establishment

of epigenetic modifications like DNA/histone methylation.

In humans it has been demonstrated that periconceptional

folic acid use is associated with epigenetic changes in the

IGF2 gene in the offspring that may affect intrauterine

programming of growth and development with conse-

quences for health and disease throughout life [171]. In

addition, periconceptional undernutrition by caloric

restriction has altered methylation patterns of a number of

genes in later life [172].

Despite recent research, we are still far from under-

standing how, when, and where environmental factors

interact with epigenetic mechanisms. Given the complexity

of epigenetics, it remains a challenging issue for future

studies to identify the role of various epigenetic partici-

pants in a given pathophysiological condition [168].

Conclusions and future challenges

It is accepted that maternal nutritional status in pregnancy

can influence foetal brain development, which in turn

affects behavioural and cognitive function in childhood.

The evidence of an association between gestational nutri-

tion and brain development seems to be more credible for

folate, n-3 fatty acids, and iron [173]. Also, the positive

effect of micronutrients on health, especially of pregnant

women eating well to maximise their child’s cognitive

outcomes, is commonly acknowledged. Recent findings

highlight the fact that single-nutrient supplementation is

less adequate than supplementation with more complex

formulae [173]. However, the optimal content of micro-

nutrient supplementation, and whether there is a long-term

impact on neurodevelopment in childhood, needs to be

investigated further.

There is also growing evidence that an individual’s

genetic background (genetic variation) can influence

nutrient status in the body [88, 144, 150, 174], which in

turn can contribute to maternal-to-infant nutrient transfer

and thereby influence the child’s mental development.

Thus, performing population-scaled epidemiological stud-

ies in the absence of genetic knowledge may result in

erroneous scientific conclusion and misinformed nutritional

recommendations. It is evident that future studies should

take into account genetic heterogeneity when evaluating

nutritional effects and also nutritional recommendations. In

fact, it was recently proposed that periconceptional use of

prenatal vitamins might reduce the risk of having children

with autism, especially for genetically susceptible mothers

and children [71, 157]. Novel studies are demonstrating

that acquired epigenetic alterations can be inherited and

can be pharmacologically reversed [167]. Understanding

the role of the epigenome is not only relevant to help to

understand how early-life experiences confer either risk or

resilience regarding later mental development, but will be

important and relevant to future therapeutics [167]. One of

the key challenges for future studies will be to establish

how, when, and where early nutrition influences children’s

mental health, both on epigenetic and on genetic level.

The NUTRIMENTHE project focuses on these ques-

tions by assessing the short- and long-term effects of pre-

and early-post-natal diet on children’s mental performance

through well-designed large-scale epidemiological studies.

Moreover, the optimal content and effect of specific

nutrients initiated during pregnancy, infancy, and child-

hood are being analysed by follow-up of randomised

clinical intervention trials. Additionally, the novel aspect of

nutrigenetics (the interaction between nutrition and genetic

variation with respect to childhood mental development)

and metabolomics is being examined within NUTRI-

MENTHE. All these aspects have been discussed in this

review, which also describes the methodological approa-

ches being taken by NUTRIMENTHE, evaluating the

weakness and positive outcomes obtained, in order to serve

as a reference for future studies.

It is said that nutritional science is entering a new era

with a shift away from ‘little science’ towards ‘big sci-

ence’, defining the new era as ‘Nutritional Science 2.0’

[160]. These authors concluded that those major nutritional

problems that have, currently, a huge impact on public

health (e.g. obesity, diabetes, malnutrition) need multiple

groups to work together in large national and international

consortia to understand and solve the problems. NUTRI-

MENTHE is an intra-European consortium gathering top
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researchers in the field of nutrition, paediatrics, psychol-

ogy, psychiatry, and genetics in order to advance our

knowledge of how nutrition affects mental health in

childhood. The knowledge obtained by NUTRIMENTHE

will contribute to the science base for dietary recommen-

dations for pregnant women and children for improving

mental health. The identification and application of nutri-

tional recommendations is ultimately of broad social sig-

nificance for the general population in terms of how it

affects health behaviour, education, work potential, and

mental illness in every age group.
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