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Abstract: Both pre- and early postnatal supplementation with docosahexaenoic acid (DHA), arachi-
donic acid (AA) and folate have been related to neural development, but their long-term effects
on later neural function remain unclear. We evaluated the long-term effects of maternal prenatal
supplementation with fish-oil (FO), 5-methyltetrahydrofolate (5-MTHF), placebo or FO + 5-MTHF,
as well as the role of fatty acid desaturase (FADS) gene cluster polymorphisms, on their offspring’s
processing speed at later school age. This study was conducted in NUHEAL children at 7.5 (n = 143)
and 9 years of age (n = 127). Processing speed tasks were assessed using Symbol Digit Modalities
Test (SDMT), Children Color Trails Test (CCTT) and Stroop Color and Word Test (SCWT). Long-chain
polyunsaturated fatty acids, folate and total homocysteine (tHcy) levels were determined at delivery
from maternal and cord blood samples. FADS and methylenetetrahydrofolate reductase (MTHFR)
677 C > T genetic polymorphisms were analyzed. Mixed models (linear and logistic) were performed.
There were significant differences in processing speed performance among children at different ages
(p < 0.001). The type of prenatal supplementation had no effect on processing speed in children
up to 9 years. Secondary exploratory analyses indicated that children born to mothers with higher
AA/DHA ratio at delivery (p < 0.001) and heterozygotes for FADS1 rs174556 (p < 0.05) showed better
performance in processing speed at 9 years. Negative associations between processing speed scores
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and maternal tHcy levels at delivery were found. Our findings suggest speed processing develop-
ment in children up to 9 years could be related to maternal factors, including AA/DHA and tHcy
levels, and their genetic background, mainly FADS polymorphism. These considerations support
that maternal prenatal supplementation should be quantitatively adequate and individualized to
obtain better brain development and mental performance in the offspring.

Keywords: long-chain polyunsaturated fatty acids; folate; prenatal supplementation; processing
speed; neurodevelopment; FADS gene; children

1. Introduction

The speed of information processing is essential for higher order cognitive functions,
including memory or executive functions [1]. Processing speed can be defined as the time
required to move information from one neuron to the next [2], or how quickly a person can
perform the mental operations needed to complete a task [3]. This cognitive process is highly
related to intact myelination, which is important for the integration of information across
spatially distributed neural networks. Moreover, the association between white matter
integrity and processing speed in cognitive tasks has been consistently established [4,5].

Long-chain polyunsaturated fatty acids (LC-PUFAs) and folic acid play an important
role in brain development, particularly during fetal and early postnatal life [6,7]. Inter-
estingly, their effects on neurodevelopment depend on timing of occurrence and brain
needs for particular nutrients at that time [8]. For instance, essential fatty acids (FA) defi-
ciencies during the first year of life lead to severe impairments in synapse formation and
myelination [9], which may have negative effects on processing speed tasks later in life [10].

LC-PUFAs, particularly docosahexaenoic acid (DHA, 22:6 n − 3) and arachidonic acid
(AA, 20:4 n − 6) are incorporated into the brain in relatively large amounts during the pre-
and postnatal growth spurt [11–13]. However, due to a limited capacity in the fetus and
neonate for PUFAs elongation and desaturation, tissue deposition of DHA and AA strongly
depends on the pre-formed LC-PUFAs supply via the placenta and postnatal diet [14].
The availability of different PUFAs is also dependent on genetic polymorphisms in the
fatty acid desaturase (FADS) gene cluster [15]. There is evidence that dietary LC-PUFAs
supply in early life may modulate information processing [12,16], cognitive and visual
development [17,18], as well as early mental and motor skills development [6,19]. Recently,
higher maternal DHA status has been also related to better performance in language and
short-term memory in the offspring [20]. Moreover, early availability of n − 6 PUFAs,
mainly AA, during pre- and postnatal periods has been positively associated to cognitive
performance and mental function in later childhood [21–23].

Folate intake before and during pregnancy is also essential for normal brain develop-
ment, differentiation and cognitive performance [24–27]. Maternal folate deficiency causes
structural brain abnormalities during fetal development and poor childhood cognitive
ability [26], while maternal folate supplementation in pregnancy improves neurologi-
cal development and may reduce the prevalence of autism spectrum disorders in their
offspring [24,28].

Having in mind that LC-PUFAs and folate play key roles in synaptogenesis, synapse
maturation and myelination, dietary intake of both nutrients might have effects on pro-
cessing speed [2]. Long-term effects of nutritional interventions on processing speed have
been classically evaluated using perceptual speed tasks [29], but further studies evaluating
specific neuropsychological domains are still missing [6,30]. Therefore, our main objec-
tive was to evaluate the potential role of LC-PUFAs and total homocysteine (functional
maker of folate status) at delivery, as well as maternal FADS polymorphisms, on children´s
processing speed at 7.5 and 9 years.
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2. Materials and Methods
2.1. Study Design and Subjects

This is a follow-up study of the NUHEAL (Nutraceuticals for a Healthier Life) trial,
registered at www.ClinicalTrials.gov, Identifier NCT01180933. Detailed study design,
subject recruitment, and population characteristics have been described elsewhere [31,32].
Briefly, NUHEAL project is a multicenter, randomized, double-blind, placebo-controlled
trial in healthy pregnant women from Munich (Germany), Pécs (Hungary) and Granada
(Spain). Children from Hungary were not included in the present analysis due to high
number of missing values. Pregnant women were assigned by blockwise randomization to
receive either a modified fish-oil (FO) preparation [500 mg DHA + 150 mg eicosapentaenoic
acid (EPA)/day], 5-methyl-tetrahydrofolate (5-MTHF) (400 µg/day), a combination of both
supplements (FO + 5-MTHF), or placebo, from gestational week 20 until delivery. Detailed
information on sociodemographic data and course of pregnancy together with maternal
blood samples were collected at 20 and 30 weeks of pregnancy and at delivery; additionally,
cord blood samples were also obtained.

Within NUTRIMENTHE EU Project (grant agreement no. 212652) framework, of 270 women
participating in NUHEAL study until giving birth, 152 mothers agreed to participate in the
follow-up for their offspring at 7.5 and 9 years of age. Processing speed tasks were entirely
performed in 143 NUHEAL children at 7.5 years (FO, n = 38; 5-MTHF, n = 29; FO + 5-MTHF,
n = 36; placebo n = 40) and 127 NUHEAL children at 9 years (FO, n = 34; 5-MTHF, n = 28;
FO + 5-MTHF = 28; placebo, n = 37) (Figure 1).
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Figure 1. Flowchart of NUHEAL participants up to 9 years. FO: fish-oil; 5-MTHF: 5-methyltetrahydrofolate. a 4 participants
who did not meet the inclusion criteria: 2 women weighed > 92 kg, 1 of whom used commercial FO preparations and
2 women regularly consumed FO preparations. b 41 participants did not complete the study: noncompliance (n = 2),
relocation (n = 1), aversion to or bad taste of the supplement (n = 9), loss of contact (n = 2) and unknown reasons (n = 27).
c 133 participants lost to follow up at 7.5 years: relocation (n = 3), loss of contact (n = 74), infants born prematurely (n = 4),
congenital left-side anophthalmus (n = 1), craniosynostosis (n = 1), left-side deafness (n = 1), unwillingness to continue
(n = 50). d Processing speed tasks were not entirely performed in 16 participants at 9 years.

The follow-up study protocols were approved by the Ethical Committees from all
centers involved in the study. Written informed consent was obtained from parents of all
participating children at study entry and at each follow-up.

2.2. Neuropsychological Assessment

NUTRIMENTHE Neuropsychological Battery (NNB) was used to evaluate the whole
spectrum of neuropsychological functioning in children aged 7.5 and 9 years, including pro-

www.ClinicalTrials.gov
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cessing speed tasks such as Symbol Digit Modalities Test (SDMT), Children Color Trails
Test (part 1) (CCTT-1) and Stroop Color and Word Test (SCWT) [33].

The Symbol Digit Modalities Test (SDMT) was used to assess information-processing
speed and attention [34]. This test requires individuals to write the correct number un-
der the corresponding symbol according to a key code specified on the top of the page,
which links different meaningless geometric symbols with numbers 1 through 9. The par-
ticipant is given 90 s to complete the task. The number of correctly identified symbols
(hits) is recorded as a score, interpreting higher scores to be an indicator of better child
processing speed.

The Children Color Trails Test (CCTT) is an individually administered neuropsycho-
logical instrument which consists of two parts used to evaluate sustained visual attention,
sequencing, psychomotor speed (part-1), and cognitive flexibility (part-2). This test requires
the connection of one set of encircled numbers (1–25) in ascending order. Current study
used only the part 1 of this test, which even numbers are printed in a yellow background
while odd numbers are printed in a pink background. The final score is the time (in seconds)
taken to complete part-1 of the CCTT [35], so that shortest time in this test is related to
better processing speed of participant.

Finally, Golden’s version of the Stroop Color and Word Test (SCWT) was used to
evaluate selective attention, cognitive inhibition and information processing speed [36].
There are three components to this task. First, participants are asked to read aloud color
words (blue, green and red) printed in black ink. Second, the child is asked to say the
colors of “XXXX” printed in blue, green or red. Finally, the child is asked to name the
ink color of color words (blue, green or red) printed in incongruent colors as quickly and
accurately as possible in 45 s time. As consequence, this test produces three direct scores:
the word-reading score, the color-naming score, and the color-word score, respectively [37].
The increase in time taken to perform the color-word test compared with the word-reading
and color-naming tests is called color-word interference effect or Stroop effect, which is
considered as the main dependent variable for SCWT test [38]. Both word-reading and
color-naming scores (hits) are related to processing speed of congruent semantic informa-
tion (high scores represent better processing speed), but color-word score is associated
to attention development and, for this reason, it has not been taken into account in the
current study.

2.3. Fatty Acid Analyses in Maternal and Umbilical Cord Plasma Phospholipids

Procedures of analysis for FA determinations in plasma phospholipids have been
described in detail elsewhere [31,32]. Briefly, blood was centrifuged at 3500× g for 10 min
at room temperature within 2 h. Plasma was thereafter removed and stored at −80 ◦C.
Lipid extraction from plasma was performed according to the method of Kolarovic and
Fournier [39]. Analysis of FA methyl esters from plasma phospholipids was performed
by high-resolution capillary gas-liquid chromatography. Conditions during the analysis
and standards used were described elsewhere [40]. Results were expressed as weight
percentages (wt %) of all quantified FA.

2.4. Folate Analysis

Analysis of plasma folate was carried out by microbiological assay using a chlo-
ramphenicol resistant strain of Lactobacillus casei, as previously described [41]. Inter and
intra-assay coefficients of variation were below of 11%.

2.5. Total Homocysteine

Total homocysteine (tHcy) concentrations were assayed by fluorescence polarized
immunoassay on the IMx autoanalyser [42]. Sample preparation and chromatographic
conditions were performance as described previously [43]. The fluorescence intensities
were measured with excitation at 385 nm and emission at 515 nm.
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2.6. SNP Selection and Genotyping

Genotyping of single-nucleotide polymorphisms (SNPs) from the FADS gene cluster
was performed with the iPLEX method (Sequenom, San Diego, CA, USA) by means
of matrix-assisted laser desorption ionization-time of flight mass spectrometry method
(MALDI-TOF MS, Mass Array, Sequenom), according to the manufacturer´s instructions,
as previously described [44]. Standard genotyping quality control included 10% duplicate
and negative samples. Genotyping discordance rate was below 0.3%. SNP selection for
following analyses is showed in Supplemental Methods (Supplemental Figure S1 and
Supplemental Tables S1–S3).

2.7. MTHFR 677 C/T Polymorphism

Genomic DNA was prepared from maternal and umbilical cord blood samples ob-
tained at delivery. DNA samples were genotyped for the methylenetetrahydrofolate reduc-
tase (MTHFR) 677 C/T variant by polymerase chain reaction (PCR), restriction enzyme
digestion, and DNA fragment separation by electrophoresis, as described previously [42].
MTHFR 677 C > T was selected for its high clinical relevance in humans due to the associa-
tion of TT genotype with high plasma homocysteine concentrations [45].

2.8. Statistical Analysis

Using standard approaches, statistical power for the current study was calculated,
setting α value as 0.05 and β value as 0.2. Different intervention groups (FO, 5-MTHF
and FO + 5-MTHF) were grouped and compared with placebo group for processing speed
tasks, including SDMT, CCTT and SCWT, in children at 7.5 years old. A statistical power of
80% was obtained for selected tasks in aforementioned population (Supplemental Table S4).
“PowerEQTL v0.1.3” (R software) was also used to calculate the statistical power for our
genetic study; except for FADS2 rs174570 and FADS3 rs2727271, a statistical power of 90%
was obtained for analyzed SNPs (Supplemental Figure S2 and Supplemental Table S5).

A descriptive analysis of quantitative variables was performed using summary mea-
sures (mean, standard deviation (SD), standard error of the mean, centiles, median, in-
terquartile or amplitude ranges), meanwhile frequency distribution was used for qualita-
tive variables. Comparisons among different groups of treatment (FO, 5-MTHF, both or
placebo) were made using one-way ANOVA for continuous variables or χ2 test for cat-
egorical variables. In order to verify the underlying hypothesis of one-way ANOVA
(variance’s homogeneity and normality), Box-Cox transformation was computed when
considered necessary. When one-way ANOVA resulted significant, Bonferroni test post-hoc
was applied.

Variables of processing speed obtained from SDMT, CCTT-1 and SCWT tests were
considered as dependent variables. Considering the hierarchical structure resulted from
processing speed evaluation in children at 7.5 and 9 years, mixed models for repeated
measures were performed considering as fixed effects a set of potential confounding vari-
ables, such as study group, time point, country of origin, maternal age, hematocrit levels,
parity, gravidity risk maternal education level, maternal smoking, maternal BMI, mode of
delivery, gestational age, child’s sex and mother’s biochemical and molecular parame-
ters at delivery (AA/DHA ratio, FADS1 rs174556 polymorphism, total homocysteine,
MTHFR C677T polymorphisms, plasma folate). Interactions between study group and time
point were also studied. The random effects were the subjects nested ID to estimate the
intra variance. Logistic regression mixed model was used when dependent variables were
dichotomized (below or above percentile 25, 50 and 75), in which case the measure of the
effect was the suitable odds ratio with corresponding confidence interval (Supplemental
Tables S6 and S7). All potential confounders were added at once and selected those which
significance p < 0.05.

All statistical analyses were performed using the statistical package STATA 12.1 (Stata Corp,
College Station, TX, USA). p values < 0.05 were considered as statistically significant.
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3. Results
3.1. Background and Baseline Characteristics of the NUHEAL Study Participants

The baseline characteristics of the mothers whose children were evaluated at 7.5 and
9 years of age are shown in Table 1. No difference between prenatal supplementation
groups were observed in those descriptive variables analyzed prior or during pregnancy,
including country of origin, maternal age, BMI at 20 and 30 weeks of pregnancy, mode of
delivery, hematocrit at 30 weeks of pregnancy, parity, smoking during pregnancy, gravidity
risk at 20 weeks of pregnancy, high maternal education, family status or gestational age at
delivery. Moreover, we analyzed maternal biochemical parameters at delivery. As expected,
plasma levels of folate were significantly higher in those mothers who received 5-MTHF or
FO + 5-MTHF supplementation during pregnancy (p < 0.001). However, type of prenatal
supplementation had no effect on maternal AA/DHA ratio and tHcy levels.

Table 1. General characteristics of the studied population.

FO
(n = 38)

5-MTHF
(n = 29)

FO + 5-MTHF
(n = 36)

Placebo
(n = 40) p

Maternal age (years) 28.81 ± 5.25 30.70 ± 5.68 29.56 ± 4.32 30.71 ± 3.90 0.231
BMI (kg/m2)

20 weeks 26.03 ± 3.62 24.92 ± 2.45 25.28 ± 2.77 24.74 ± 2.28 0.221
30 weeks 28.52 ± 3.91 26.87 ± 2.43 27.23 ± 2.86 26.91 ± 2.29 0.511

Country of origin 0.102
Spain 28(73.7%) 18(62%) 26(72.2%) 25(62.5%)

Germany 10(24.3%) 11(38%) 10(27.8%) 15(37.5%)
Hematocrit (%) at 30 weeks 33.85 ± 3.73 32.61 ± 5.14 33.37 ± 2.58 33.13 ± 2.75 0.662

Parity [n (%)] 0.521
0 23 (60.5%) 23 (79.3%) 28 (93.3%) 28 (70%)
≥1 3 (7.9%) 3 (12.5%) 2 (5.5%) 4 (10%)

Mode of Delivery 0.220
Spontaneous 22(57.9%) 15(51.7%) 21(58.3%) 18(45%)

Forceps 2(5.2%) 6(17.2%) 2(5.5%) 2(5%)
Vacuum 0 0 0 2(5%)

Cesarean section 4(10.5%) 2(6.9%) 3(8.3%) 6(15%)
Smoking in pregnancy

[Yes = n (%)] 7 (18.4%) 5 (17.2%) 7 (19.4%) 4 (10%) 0.251

Gravidity risk at 20 weeks [n (%)] 0.652
No risk factors 6 (15.8%) 6 (20.7%) 8 (22.2%) 11 (27.5%)
≥1 risk factors 18 (47.4%) 18 (62.1%) 22 (61.1%) 21 (52.5%)

High Maternal education [n (%)] 8 (21.05%) 8 (27.58%) 14 (38.89%) 10 (25%) 0.332
Family Status Pregnancy [n (%)] 0.124

Single 8 (21.1%) 8 (27.4%) 1 (2.7%) 10 (25%)
Partnership 23 (60.5%) 23 (44.8%) 29 (80.6%) 29 (72.5%)

Gestational Age (weeks) 38.90 ± 1.51 38.75 ± 1.62 38.73 ± 2.06 39.43 ± 1.43 0.622
AA/DHA 1 0.90 ± 0.38 1.13 ± 0.54 0.97 ± 0.42 1.14 ± 0.63 0.098

Plasma Folate (µg/L) 1 6.17 ± 4.33 12.10 ± 5.55 13.46 ± 5.78 6.06 ± 0.82 <0.001
tHcy (µmol/L) 1 7.08 ± 2.83 6.29 ± 2.81 6.93 ± 3.09 6.78 ± 2.39 0.952

Data are presented as n (%) for categorical data, and mean ± SDs for parametrically distributed data.1: Values obtained from mothers at
delivery. p: level of significance from one-way ANOVA for continuous variables or χ2 test for categorical variables. Bold: p value < 0.05.
Noted that there are missing values for some descriptive variables. 5-MTHF: 5-methyltetrahydrofolate; AA: arachidonic acid; DHA:
docosahexaenoic acid; FO: fish-oil; tHcy: total homocysteine. n = number of cases.

3.2. Processing Speed Task of the NUHEAL Children at 7.5 and 9 Years Old

As shown in Table 2, no significant statistical differences were found among the type
of prenatal supplementation in all analyzed processing speed tasks at 7.5 years, except for
CCTT-1 test. In fact, children born to mothers who were supplemented with 5-MTHF
during pregnancy showed a decrease in the timing to solve CCTT-1 (p = 0.017). Moreover,
there were no differences between type of prenatal supplementation and processing speed
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tasks at 9 years old. In general, we observed that children aged 9 years had better processing
speed than those aged 7.5 years in terms of higher scores and less time to solve CCTT-1 test.

Table 2. Descriptive analysis of processing speed evaluation in the NUHEAL children at 7.5 and 9 years.

FO 5-MTHF FO + 5-MTHF Placebo
p

Children at 7.5 Years n Mean ± SD n Mean ± SD n Mean ± SD n Mean ± SD

SDMT—hits 36 23.56 ± 7.62 28 22.61 ± 6.87 34 22.38 ± 5.27 41 24.66 ± 6.38 0.204
CCTT-1 (sc) 36 100.44 ± 39.27 28 87.85 ± 30.05 34 96.56 ± 34.48 41 99.88 ± 50.77 0.017

STROOP Test—hits-1 (Word-reading) 37 59.49 ± 17.72 28 61.82 ± 11.66 34 57.68 ± 16.34 41 59.34 ± 16.41 0.155
STROOP Test—hits-2 (Color-naming) 37 38.97 ± 7.77 28 42.14 ± 7.26 34 42.18 ± 9.36 41 41.95 ± 8.41 0.523

Children at 9 years

SDMT—hits 33 31.42 ± 6.66 26 30.00 ± 7.16 28 30.25 ± 7.73 37 33.76 ± 8.60 0.500
CCTT-1 (sc) 33 57.60 ± 17.13 28 67.99 ± 23.16 28 73.61 ± 24.73 37 66.58 ± 25.99 0.112

STROOP Test—hits-1 (Word-Reading) 34 70.53 ± 12.69 28 71.54 ± 10.29 28 72.32 ± 8.71 37 73.62 ± 9.65 0.187
STROOP Test—hits-2 (Color-Naming) 34 48.26 ± 7.58 28 49.32 ± 9.49 28 50.61 ± 8.57 37 51.41 ± 7.94 0.627

p: level of significance obtained from one-way ANOVA test; Bold: p < 0.05. 5-MTHF: 5-methyltetrahydrofolate; CCTT-1: Children Color
Trails Test; FO: fish-oil; SDMT: Symbol Digit Modalities Test; n = number of cases.

3.3. Prenatal Predictors of Processing Speed in Children up to 9 Years
3.3.1. Symbol Digit Modalities Test (SDMT) Hits

Type of prenatal supplementation had no long-term effects on SDMT hits in children
at 7.5 and 9 years, (Table 3). However, we observed an age-dependent increase in SDMT
hits; in fact, children at 9 years showed an increase of 10.72 points in the mean of hits
[(95% CI: 7.98–13.47); p < 0.001] compared to children at 7.5 years. Moreover, each unit of
increase in maternal AA/DHA ratio at delivery predicted an increase of 8.80 points in the
mean of SDMT hits [(95% CI: 3.61–13.99); p = 0.001]. Conversely, higher maternal weight
gain between 20 and 30 weeks of pregnancy (dBMI) [(95% CI: −1.25–−0.02); p = 0.043] and
maternal tHcy [(95% CI: −1.02–−0.002); p = 0.049] were associated with a decrease of 0.63
and 0.52 points in the mean of SDMT hits, respectively.

Table 3. Effect of selected cofounders on the processing speed outcomes in the NUHEAL children.
Only significant associations are shown.

Categories b
CI (95%)

p
LCL UCL

Symbol Digit Modalities Test (SDMT) (Hits)

Time point 7.5 years 0 - - -
9 years 10.72 7.98 13.47 <0.001

dBMI (kg/m2) −0.63 −1.25 −0.02 0.043
AA/DHAratio 1,2 8.80 3.61 13.99 0.001
tHcy (µmol/L) 1 −0.52 −1.02 −0.002 0.049

Children Color Trails Test (CCTT−1) (sc)

Time point 7.5 years 0 - - -
9 years −34.12 −46.92 −21.10 <0.001

Smoking No 0 - - -
Yes 23.43 9.43 37.44 0.001

Mode of delivery

Spontaneous 0 - - -
Forceps −5.91 −25.07 13.24 0.545
Vacuum 24.77 6.01 43.53 0.010
Cesarean
section 2.66 −9.15 14.47 0.659

AA/DHAratio 1,2 −27.87 −51.13 −4.61 0.019
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Table 3. Cont.

Categories b
CI (95%)

p
LCL UCL

Word-Reading Stroop Test (WRST) (hits)

Time point 7.5 years 0 - - -
9 years 15.37 11.20 19.55 <0.001

Sex Girls 0 - - -
Boys −4.93 −9.06 −0.81 0.019

tHcy (µmol/L) 1 −1.09 −2.04 −0.14 0.025

Color-Naming Stroop Test (CNST) (hits)

Time point 7.5 years
9 years 10.00 6.80 13.21 <0.001

AA/DHA ratio 1,2 6.55 0.50 12.60 0.034
1: values obtained from mothers at delivery; 2: fatty acids measured as % of total fatty acids. b: Regression
coefficient; CI: Confidence Interval; LCL: lower confidence limit; UCL; upper confidence limit; p: level of
significance obtained from mixed model analysis; dBMI: difference of body mass index between 20 and 30 weeks
of pregnancy; AA: Arachidonic acid; DHA: Docosahexaenoic acid; tHcy: total homocysteine. Bold: p value < 0.05.

Further logistic regression analysis, characterizing those children aged 9 years having
hits above P75, showed that maternal AA/DHA ratio at delivery was the best predictor to
obtain higher number of SMDT hits [OR: 30.46 (95% CI: 3.68–252.0); p = 0.002] (Table 4).
This probability is also increased in those children whose mothers had a high educational
level (p = 0.013) or were heterozygote for FADS1 rs174556 (p = 0.014). However, maternal
tHcy at delivery reduced the odds of placing children aged 9 years above the P75, with a
probability of 0.71 to obtain less hits per each unit (µmol/L) of increase of tHcy [OR: 0.71
(95% CI: 0.56–0.89); p = 0.003].

Table 4. Logistic regression analysis after dichotomizing children aged 9 years of age below or above P75, P50 or P25 for
Symbol Digit Modalities Test (SDMT), Children Color Trails Test (CCTT-1) and STROOP Test. Only significant associations
are shown.

Maternal
AA/DHA

FADS1 rs174556 Maternal
tHcy

Maternal High
Education

Maternal
Age1 2

SDMT—hits P75
Contrast
95% CI
p-value

30.46
(3.68, 252.0)

0.002

3.31
(1.28, 8.56)

0.014

1.43
(0.31, 6.55)

0.64

0.71
(0.56, 0.89)

0.003

3.63
(1.32, 9.98)

0.013

1.04
(0.94, 1.14)

0.446

CCTT-1 (sc) P25
Contrast
95% CI
p-value

18.53
(2.13, 160.9)

0.008

2.75
(1.02, 7.39)

0.045

4.95
(0.91, 27.07)

0.065

1.03
(0.85, 1.26)

0.733

2.03
(0.71, 5.77)

0.184

1.03
(0.93, 1.14)

0.587

STROOP Test—hits 1
(Word-reading) P50

Contrast
95% CI
p-value

3.73
(0.31, 44.28)

0.297

0.63
(0.19, 2.03)

0.439

1.67
(0.22, 12.85)

0.624

0.69
(0.51, 0.93)

0.015

1.47
(0.44, 4.85)

0.529

0.95
(0.84, 1.08)

0.440

STROOP Test—hits 2
(Color-naming) P75

Contrast
95% CI
p-value

21.70
(0.88, 534.97)

0.06

0.28
(0.07, 1.16)

0.08

0.67
(0.07, 6.48)

0.733

0.51
(0.32, 0.81)

0.005

0.69
(0.17, 2.76)

0.602

1.20
(1.01, 1.42)

0.039

p: level of significance obtained from logistic regression mixed model; Bold: p < 0.05. 1 = Heterozygous, 2 = Homozygous minor; AA:
arachidonic acid; CCTT-1: Children Color Trails Test; DHA: Docosahexaenoic acid; FADS: Fatty Acid Desaturase; SDMT: Symbol Digit
Modalities Test; tHcy: total homocysteine.
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3.3.2. Children Color Trails Test (CCTT−1)

No statistically significant differences in elapsed time for CCTT-1 at 7.5 and 9 years
were found among groups of prenatal supplementation after adjustment for selected
confounders. Independently of prenatal supplementation, children aged 9 years showed
a decrease in the timing spent to solve the task compared to their results at the previous
examination at age 7.5 years (p < 0.001) (Table 3).

After considering the interaction between age and prenatal supplementation, we
observed that decrease in time elapsed was higher in those children whose mothers were
supplemented with FO during pregnancy (p = 0.0001), 5-MTHF (p = 0.0113) or FO + 5-MTHF
(p = 0.038) (Figure 2), but not in the placebo group.
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Figure 2. Effects of prenatal supplementation on CCTT-1 test in children at 7.5 and 9 years. Level of
significance was obtained from one-way ANOVA. * Significant differences between 7.5 years and
9 years were observed in time spent (s) to solve the CCTT-1 test between children whose mothers
were supplemented with FO (p = 0.0001), 5-MTHF (p = 0.0113) or both treatments (FO + 5MTHF)
(p = 0.038) during pregnancy. 5-MTHF: 5-Methyltetrahydrofolate; CCTT-1: Children´s Color Trails
Test; FO: fish-oil.

As shown in Table 3, other selected cofounders had also a significant association
on the time required to complete CCTT-1 test. In fact, vacuum delivery determined an
increase in the time elapsed of 24.77 s for the task (p = 0.010) compared to those children
whose mothers had an uncomplicated spontaneous delivery. Moreover, smoking during
pregnancy had also a negative effect on the child’s CCTT-1 hits, increasing the time of
solving this task in 23.43 s (p = 0.001). Finally, we observed that maternal AA/DHA ratio
at delivery was a significant factor determining less timing to solve the CCTT-1 task of
their offspring up to 9 years (−27.87 s, p = 0.019). Positive association between maternal
AA/DHA ratio and CCTT-1 was also determined after logistic regression analysis, and
characterizing those children aged 9 years with elapsed time of solving the CCTT-1 below
the P25 [OR: 18.53 (95% CI: 2.13–160.9); p = 0.008] (Table 4). Shorter solving times were also
observed in those children born to mothers who were heterozygote for FADS1 rs174556
[OR: 2.75 (95% CI: 1.02–7.39; p = 0.045].

3.3.3. Stroop Color and Word Test (SCWT)

We analyzed the influence of prenatal supplementation and other selected cofounders
on the information processing speed using Stroop Color and Word test and its obtained
scores: Word-Reading (WRST) and Color-Naming (CNST).

Similarly to initial descriptive evaluation, further adjusted analysis for selected co-
founders did not show statistically significant differences between different types of prena-
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tal supplementation in the number of WRST hits obtained by children at 7.5 and 9 years
(Table 3). However, independently of maternal supplementation during pregnancy, chil-
dren at 9 years showed an increase of 15.37 points in the number of hits for WRST (p < 0.001)
respect to children at 7.5 years. In relation to other cofounders considered in the model,
boys showed 4.93 less hits than girls solving the task (p = 0.019). Moreover, we also ob-
served that each increment of one unit (µmol/L) of maternal tHcy at delivery predicted
that their offspring had 1.09 less hits by average solving the task (p = 0.025). Further
logistic regression analysis, characterizing those children aged 9 years which hits of solving
the WRST test below the P50, determined that maternal tHcy at delivery had a negative
influence on this test [OR: 0.69 (95% CI: 0.51–0.93); p = 0.015] (Table 4).

When analyzing the effects of both prenatal supplementation and child’s age on CNST,
similar results to those reported above were found. In fact, cofounder adjustment analysis
did not show statistical differences between different groups of prenatal supplementation
in the number of hits obtained by NUHEAL children at 7.5 and 9 years. Again, there was
an increase of CNST hits at 9 years compared to 7.5 years (p < 0.001), but this effect was
independent of type of supplementation during pregnancy (Table 3). Interestingly, we
observed that each increment of one unit of AA/DHA ratio in maternal blood at delivery
determined that their offspring had 6.55 more hits by average solving the CNST (p = 0.034)
(Table 3). After logistic regression analysis, we observed that maternal age positively
influenced the likelihood for children aged 9 years to be above the P75 to solve CNST test
(OR: 1.20 (95% CI: 1.01–1.42); p = 0.039), but maternal tHcy level at delivery reduced this
probability (OR: 0.51 (95% CI: 0.32–0.81); p = 0.005) (Table 4).

4. Discussion

This study was performed to analyze the long-term effects of prenatal supplementa-
tion, as well as maternal FADS and MTHFR genetic polymorphisms, on processing speed
in healthy school-age children. Our results suggest that neither FO nor folate prenatal sup-
plementation predicted high processing speed scores at school-age children. However, our
secondary exploratory analyses seem to indicate that maternal AA/DHA ratio and FADS1
rs174556 SNPs, were positively associated with later processing speed in their offspring up
to 9 years, particularly in SDMT and CCTT-1 tests, while tHcy concentrations in maternal
plasma at delivery showed a negatively effect on child processing speed, according to
results obtained in SDMT, WRST and CNST tests.

Prenatal folic acid supplementation has been related to better neurodevelopment in
offspring, in terms of reducing the risk of behavioral problems [46], language delay [47],
inattention [24], hyperactivity and peer problems [4,48,49]. However, their potential effects
on cognitive and mental performance during development are inconsistent, partly due
to the very limited number of studies published [50]. Folic acid acts as methyl donor
in the metabolic conversion of homocysteine (Hcy) to methionine [51]. As consequence,
poor folate status, by itself or in combination with a poor status of other B-vitamins,
attenuates this metabolic pathway, which subsequently increases total Hcy levels. There
is evidence that higher maternal Hcy (≥8.3 µmol/L) may not only negatively influence
placental development, birth weight and pregnancy outcomes [52], but is also related to
cytotoxic- and oxidative stress-dependent endothelial cell impairment and apoptosis of
placental trophoblast [53,54]. Our results suggest a negative relation between maternal tHcy
and the child´s later cognitive function. Children born to mothers with high tHcy levels
during pregnancy showed a decrease in SDMT and SCWT hits, as well as lower likelihood
to be in the upper percentiles of the WRST and CNST. Because tHcy concentrations are a
functional indicator of folate status, folate supplementation before and during pregnancy
may enhance neurodevelopment, while early supplementation also reduces the risk of
congenital malformations [55].

Fetal blood levels of LC-PUFAs, including DHA and AA levels, are closely related
to maternal LC-PUFAs status during pregnancy [32], and play a major role for an opti-
mal brain development [20,56]. DHA is related to synaptogenesis, nerve growth factor
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expression and neuronal differentiation [57]. AA is involved in several synaptic signaling
pathways [58], synthesis of eicosanoids, prostaglandins and leukotrienes [11,12], growth-
related early gene expression and cell growth [59,60]. However, controversial results have
been reported regarding long-term effects of n − 3 or n − 6 LC-PUFAs supplementation
during pregnancy or lactation on the child’s later neurodevelopment [6,17,31,61–63]. As a
consequence, there is growing interest to analyze the long-term effects of AA/DHA ratio on
child neurodevelopment, which reflects both its endogenous synthesis and exogenous sup-
ply. Moreover, because both FAs compete for the same enzymatic pathways to convert them
into biologically active eicosanoids, AA/DHA ratio is strongly influenced by the preva-
lence of genetic predisposition for FADS and elongase genes [57]. Higher DHA/AA ratio
and higher DHA concentrations in cord blood have been considered beneficial for infant
visual, cognitive and motor development in Arctic Inuit exposed to high intakes of seafood
and n − 3 LC-PUFAs [64]. In our study, we did not find clear associations between type of
prenatal supplementation and processing speed development, except for beneficial effects
of prenatal FO supplementation on CCTT-1 elapsed time at 9 years. However, a higher
maternal AA/DHA ratio seems to be a positive and long-term modulator of processing
speed (mainly on SDMT, CCTT-1 and CNST) in the offspring, indicating the importance
not only of DHA but also its equilibrium with AA. Interestingly, at 9 years, children whose
mothers were heterozygotes for FADS1 rs174556 performed better the processing speed
tasks respect to those born to mothers with homozygous major alleles. Our findings are
also consistent with a role of PUFAs in myelination and white matter integrity, as shown in
animal studies [65–67]. In this regard, DHA may increase processing speed by changing the
physical-chemical and structural properties of membrane [68]. Moreover, Peters et al. [69]
not only demonstrated that erythrocyte membrane PUFAs concentrations in young adults
seem to be robustly related to white matter integrity, but also showed that these associations
were mostly related to AA levels. Since a connection between white matter integrity and
processing speed in cognitive tasks has been established, our results seem to show positive
and strong long-term effects of perinatal LC-PUFAs, in terms of adequate AA/DHA ratio
and FADS1 polymorphism, on cognitive development, suggesting an increase of white
matter volume and better integrity.

The major strength of the present study is the long-term follow-up, from pregnancy
to age 9 years, allowing us to obtain evaluation of long-term effects of prenatal supple-
mentation with FO, 5-MTHF or FO + 5-MTHF on the child’s cognitive abilities. Moreover,
the NUHEAL study was conducted in three different countries (Spain and Germany) with
distinct eating habits. Given that country of origin has been accounted for as a confounder,
our data show that long-term effects observed on processing speed are independent of the
women’s diet. In this regard, we highlight the influence of the cultural level of the mothers
on the processing speed of their children, which increases the need to take into account the
different socio-environmental factors during early life that may influence on later speed
processing capacities.

Our results have some limitations. The number of children who belong to each study
group was homogeneous but relatively low. However, after combining the data from
children born to mothers who were supplemented during pregnancy (n = 103), the effects
of supplement combinations were significant with respect to children whose mothers
received placebo. Secondly, the effects of FO, 5-MTHF or FO + 5-MTHF supplementation
were not evaluated at different time-points of administration. Moreover, our study has been
conducted only in a selected age range (7.5–9 years). Thus, future studies will be necessary
to evaluate whether our findings can be extended to other times of administration or at
different ages during development. Moreover, conversion of homocysteine to methionine
is largely based on both folate and vitamin B12 levels, which act as substrate and cofactor,
respectively. However, the status of vitamin B12 level in our study is largely unknown.
Finally, neuropsychological tests used to evaluate processing speed were administered by
different technicians in each country, although all of them received a common training to
reduce the examiner and cultural influences on the results.
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Findings obtained in this study should be interpreted with caution. NUHEAL women
belonging to FO and FO + 5-MTHF groups received fish oil preparation, alone or in
combination with folate, at a dose of 500 mg DHA + 150 mg EPA from week 20 until
delivery, which are higher than current international recommendations (200–300 mg of
DHA/day) [12,70]. In addition, study participants followed their usual eating patterns,
including PUFAs rich food. Therefore, it is of utmost importance to determine the timing,
necessary duration and dosage of DHA + EPA supplementation (in equilibrium to AA)
during pregnancy, for obtaining the best cognitive development in the offspring. Interest-
ingly, the mixed supplementation including FO and 5-MTHF had no effect on processing
speed up to age 9 years. Thus, we propose that maternal supplementation based on folate,
DHA and EPA should be individualized, taking into account diet, habits, folate status and
maternal FADS1 genetic variant rs174556 G/A, and perhaps not together at the same time
during pregnancy.

5. Conclusions

In summary, in our population the maternal AA/DHA ratio at delivery and maternal
heterozygosity for the FADS1 genetic variant rs174556 had positive long-term effects on
processing speed in the offspring up to 9 years. Processing speed tasks, in terms of less
time to solve CCTT-1 task time, was also better in the offspring of mothers who received
prenatal FO supplementation. Our results also suggest that the increased maternal tHcy
levels predict worse speed processing development at 9 years. These results suggest to
devote attention to an adequate maternal LC-PUFAs and folate status during pregnancy.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
643/13/1/131/s1, Table S1: Characteristics of the 17 analysed variants in FADS 1/2/3 gene cluster
of NUHEAL population; Table S2: Characteristics of the 4 selected variants in FADS 1/2 gene from
the initial 17 SNPs analyzed in the NUHEAL population; Table S3: Pairwise linkage disequilibrium
analysis in maternal selected FADS SNPs; Table S4: Power calculation obtained for processing speed
evaluation in NUHEAL children; Table S5: Power calculation obtained for genetic study in NUHEAL
children; Table S6: Pairwise comparison of predictive margins of the mixed effects logistic regression
model; Table S7: Pairwise comparison of predictive margins of the mixed effects logistic regression
model. Figure S1: Pairwise LD measured in D’ (a) and r2 (b) for selected maternal FADS SNPs;
Figure S2: Power estimation, α = 0.05, SNPs = 17 (one-way unbalanced ANOVA).

Author Contributions: Conceptualization, C.C., M.P.-G.; methodology, C.C., J.d.D.L. and M.P.-G.;
formal analysis, C.C., H.A., M.d.C.R.-T., A.M.M., J.d.D.L.; investigation, F.J.T.-E., C.M.-Z., G.H., E.G.;
writing—original draft preparation, C.C.; writing—review and editing, C.C., J.A.G.-S., H.D., E.R.,
P.R., M.P.-G.; supervision, C.C., T.D., B.K.; project administration, C.C., T.D., B.K.; conceptualization
of the NUHEAL trial and funding acquisition, C.C., T.D., B.K., C.C., B.K. and T.D. were coordinators
of the NUHEAL study at Granada, Germany and Hungary, respectively. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Commission of the European Community’s 7th Frame-
work Program (FP7/2008-2013), Grant agreement no. 212652 (NUTRIMENTHE Project); within
the 6th Framework Program, Contract no. 007036 (EARNEST Project); and supported in part by
the Commission of the European Community within the 5th Framework Program, Contract no.
QLK1-CT-1999-00888 (NUHEAL EU Project). This publication is the work of the authors and does
not necessarily reflect the views of the Commission of the European Community. The work of
B.K. is supported by the European Commission, H2020 Programmes DYNAHEALTH-633595 und
Lifecycle-733206, the European Research Council Advanced Grant META-GROWTH ERC-2012-
AdG–no.322605, the Erasmus Plus Programmes Early Nutrition eAcademy Southeast Asia-573651-
EPP-1-2016-1-DE-EPPKA2-CBHE-JP and Capacity Building to Improve Early Nutrition and Health
in South Africa-598488-EPP-1-2018-1-DE-EPPKA2-CBHE-JP, the EU Interreg Programme Focus in
CD-CE111 and the European Joint Programming Initiative Project NutriPROGRAM and EndObesity,
the German Ministry of Education and Research, Berlin (Grant Nr. 01 GI 0825), and the German
Research Council (Ko912/12-1 and INST 409/224-1 FUGG). BK is the Else Kröner-Senior professor

https://www.mdpi.com/2072-6643/13/1/131/s1
https://www.mdpi.com/2072-6643/13/1/131/s1


Nutrients 2021, 13, 131 13 of 16

of Paediatrics at LMU financially supported by the Else Kröner-Fresenius-Foundation and LMU
University Hospitals. Funders had no role in the design, analysis or writing of this article.

Institutional Review Board Statement: NUTRIMENTHE Project (FP7 KBBE-2007-1) was conducted
according to the guidelines of the Declaration of Helsinki for human research studies in 2013, and
approved by the Ethics Committee for human research of University of Munich (protocol code 01111),
University of Granada (Grant agreement number 212652) and University of Pécs (Grant agreement
number 3297).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to acknowledge the parents and children who participated in
the study, an also the pediatricians and technicians belonging to NUHEAL team from University of
Munich, University of Granada and University of Pécs for their contribution.

Conflicts of Interest: The authors declare no conflict of interest.

Statement: The results of this article have been included in the Doctoral Thesis of Hatim Azaryah in
the context of the Epidemiology and Public Health Doctoral Program at the University of Granada.

References
1. Rabbitt, P.; Scott, M.; Lunn, M.; Thacker, N.; Lowe, C.; Pendleton, N.; Horan, M.; Jackson, A. White matter lesions account for all

age-related declines in speed but not in intelligence. Neuropsychology 2007, 21, 363–370. [CrossRef] [PubMed]
2. Cheatham, C.L.; Nerhammer, A.S.; Asserhoj, M.; Michaelsen, K.F.; Lauritzen, L. Fish oil supplementation during lactation: Effects

on cognition and behavior at 7 years of age. Lipids 2011, 46, 637–645. [CrossRef] [PubMed]
3. Salthouse, T.A. Aging and measures of processing speed. Biol. Psychol. 2000, 54, 35–54. [CrossRef]
4. Kochunov, P.; Coyle, T.; Lancaster, J.; Robin, D.A.; Hardies, J.; Kochunov, V.; Bartzokis, G.; Stanley, J.; Royall, D.; Schlosser, A.E.; et al.

Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging. Neuroimage
2010, 49, 1190–1199. [CrossRef] [PubMed]

5. Penke, L.; Munoz, M.S.; Murray, C.; Gow, A.J.; Hernandez, M.C.; Clayden, J.D.; Starr, J.M.; Wardlaw, J.M.; Bastin, M.E.; Deary,
I.J. A general factor of brain white matter integrity predicts information processing speed in healthy older people. J. Neurosci.
2010, 30, 7569–7574. [CrossRef]

6. Campoy, C.; Escolano-Margarit, M.V.; Anjos, T.; Szajewska, H.; Uauy, R. Omega 3 fatty acids on child growth, visual acuity and
neurodevelopment. Br. J. Nutr. 2012, 107 (Suppl. 2), S85–S106. [CrossRef]

7. Koletzko, B.; Boey, C.C.; Campoy, C.; Carlson, S.E.; Chang, N.; Guillermo-Tuazon, M.A.; Joshi, S.; Prell, C.; Quak, S.H.; Sjarif, D.R.;
et al. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy:
Systematic review and practice recommendations from an early nutrition academy workshop. Ann. Nutr. Metab. 2014, 65, 49–80.
[CrossRef]

8. Georgieff, M.K. Nutrition and the developing brain: Nutrient priorities and measurement. Am. J. Clin. Nutr. 2007, 85, 614S–620S.
[CrossRef]

9. McNamara, R.K.; Carlson, S.E. Role of omega-3 fatty acids in brain development and function: Potential implications for the
pathogenesis and prevention of psychopathology. Prostaglandins Leukot. Essent. Fatty Acids 2006, 75, 329–349. [CrossRef]

10. Chevalier, N.; Kurth, S.; Doucette, M.R.; Wiseheart, M.; Deoni, S.C.; Dean, D.C., III; O’Muircheartaigh, J.; Blackwell, K.A.;
Munakata, Y.; LeBourgeois, M.K. Myelination Is Associated with Processing Speed in Early Childhood: Preliminary Insights.
PLoS ONE 2015, 10, e0139897. [CrossRef]

11. Delgado-Noguera, M.F.; Calvache, J.A.; Cosp, X.B.; Kotanidou, E.P.; Galli-Tsinopoulou, A. Supplementation with long chain
polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development. Cochrane. Database.
Syst. Rev. 2015. [CrossRef] [PubMed]

12. Koletzko, B.; Cetin, I.; Brenna, J.T. Dietary fat intakes for pregnant and lactating women. Br. J. Nutr. 2007, 98, 873–877. [CrossRef]
[PubMed]

13. Simmer, K.; Patole, S.K.; Rao, S.C. Long-chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane.
Database. Syst. Rev 2008. [CrossRef]

14. Carlson, S.E. Docosahexaenoic acid supplementation in pregnancy and lactation. Am. J. Clin. Nutr. 2009, 89, 678S–684S. [CrossRef]
15. Lattka, E.; Klopp, N.; Demmelmair, H.; Klingler, M.; Heinrich, J.; Koletzko, B. Genetic variations in polyunsaturated fatty acid

metabolism—Implications for child health? Ann. Nutr. Metab. 2012, 60 (Suppl. 3), 8–17. [CrossRef]
16. Simmer, K.; Patole, S.K.; Rao, S.C. Long-chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane

Database Syst. Rev. 2011, 12. [CrossRef]
17. De, G.R.; Roggi, C.; Cena, H. n-3 LC-PUFA supplementation: Effects on infant and maternal outcomes. Eur. J. Nutr. 2014, 53, 1147–1154.

[CrossRef]
18. Scholtz, S.A.; Kerling, E.H.; Shaddy, D.J.; Li, S.; Thodosoff, J.M.; Colombo, J.; Carlson, S.E. Docosahexaenoic acid (DHA)

supplementation in pregnancy differentially modulates arachidonic acid and DHA status across FADS genotypes in pregnancy.
Prostaglandins Leukot. Essent. Fatty Acids 2015, 94, 29–33. [CrossRef]

http://doi.org/10.1037/0894-4105.21.3.363
http://www.ncbi.nlm.nih.gov/pubmed/17484599
http://doi.org/10.1007/s11745-011-3557-x
http://www.ncbi.nlm.nih.gov/pubmed/21512889
http://doi.org/10.1016/S0301-0511(00)00052-1
http://doi.org/10.1016/j.neuroimage.2009.09.052
http://www.ncbi.nlm.nih.gov/pubmed/19796691
http://doi.org/10.1523/JNEUROSCI.1553-10.2010
http://doi.org/10.1017/S0007114512001493
http://doi.org/10.1159/000365767
http://doi.org/10.1093/ajcn/85.2.614S
http://doi.org/10.1016/j.plefa.2006.07.010
http://doi.org/10.1371/journal.pone.0139897
http://doi.org/10.1002/14651858.CD007901.pub3
http://www.ncbi.nlm.nih.gov/pubmed/26171898
http://doi.org/10.1017/S0007114507764747
http://www.ncbi.nlm.nih.gov/pubmed/17688705
http://doi.org/10.1002/14651858.CD000376.pub2
http://doi.org/10.3945/ajcn.2008.26811E
http://doi.org/10.1159/000337308
http://doi.org/10.1002/14651858.CD000376.pub3
http://doi.org/10.1007/s00394-014-0660-9
http://doi.org/10.1016/j.plefa.2014.10.008


Nutrients 2021, 13, 131 14 of 16

19. Judge, M.P.; Cong, X.; Harel, O.; Courville, A.B.; Lammi-Keefe, C.J. Maternal consumption of a DHA-containing functional food
benefits infant sleep patterning: An early neurodevelopmental measure. Early Hum. Dev. 2012, 88, 531–537. [CrossRef]

20. Mulder, K.A.; Elango, R.; Innis, S.M. Fetal DHA inadequacy and the impact on child neurodevelopment: A follow-up of a
randomised trial of maternal DHA supplementation in pregnancy. Br. J. Nutr. 2018, 119, 271–279. [CrossRef]

21. Kohlboeck, G.; Glaser, C.; Tiesler, C.; Demmelmair, H.; Standl, M.; Romanos, M.; Koletzko, B.; Lehmann, I.; Heinrich, J. Effect of
fatty acid status in cord blood serum on children’s behavioral difficulties at 10 y of age: Results from the LISAplus Study. Am. J.
Clin. Nutr. 2011, 94, 1592–1599. [CrossRef] [PubMed]

22. Koletzko, B.; Carlson, S.E.; van Goudoever, J.B. Should Infant Formula Provide Both Omega-3 DHA and Omega-6 Arachidonic
Acid? Ann. Nutr. Metab. 2015, 66, 137–138. [CrossRef] [PubMed]

23. Steer, C.D.; Lattka, E.; Koletzko, B.; Golding, J.; Hibbeln, J.R. Maternal fatty acids in pregnancy, FADS polymorphisms, and child
intelligence quotient at 8 y of age. Am. J. Clin. Nutr. 2013, 98, 1575–1582. [CrossRef] [PubMed]

24. Julvez, J.; Fortuny, J.; Mendez, M.; Torrent, M.; Ribas-Fito, N.; Sunyer, J. Maternal use of folic acid supplements during pregnancy
and four-year-old neurodevelopment in a population-based birth cohort. Paediatr. Perinat. Epidemiol. 2009, 23, 199–206. [CrossRef]

25. Marques, A.H.; O’Connor, T.G.; Roth, C.; Susser, E.; Bjorke-Monsen, A.L. The influence of maternal prenatal and early childhood
nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front.
Neurosci. 2013, 7, 120. [CrossRef]

26. Veena, S.R.; Krishnaveni, G.V.; Srinivasan, K.; Wills, A.K.; Muthayya, S.; Kurpad, A.V.; Yajnik, C.S.; Fall, C.H. Higher maternal
plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to
10- year-old children in South India. J. Nutr. 2010, 140, 1014–1022. [CrossRef]

27. Villamor, E.; Rifas-Shiman, S.L.; Gillman, M.W.; Oken, E. Maternal intake of methyl-donor nutrients and child cognition at 3 years
of age. Paediatr. Perinat. Epidemiol. 2012, 26, 328–335. [CrossRef]

28. Suren, P.; Roth, C.; Bresnahan, M.; Haugen, M.; Hornig, M.; Hirtz, D.; Lie, K.K.; Lipkin, W.I.; Magnus, P.; Reichborn-Kjennerud, T.; et al.
Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 2013, 309, 570–577.
[CrossRef]

29. Lu, P.H.; Lee, G.J.; Raven, E.P.; Tingus, K.; Khoo, T.; Thompson, P.M.; Bartzokis, G. Age-related slowing in cognitive processing
speed is associated with myelin integrity in a very healthy elderly sample. J. Clin. Exp. Neuropsychol. 2011, 33, 1059–1068.
[CrossRef]

30. Carlson, S.E. Early determinants of development: A lipid perspective. Am. J. Clin. Nutr. 2009, 89, 1523S–1529S. [CrossRef]
31. Campoy, C.; Escolano-Margarit, M.V.; Ramos, R.; Parrilla-Roure, M.; Csabi, G.; Beyer, J.; Ramírez-Tortosa, M.C.; Molloy, A.M.;

Decsi, T.; Koletzko, B.V. Effects of prenatal fish-oil and 5-methyltetrahydrofolate supplementation on cognitive development of
children at 6.5 y of age. Am. J. Clin. Nutr. 2011, 94, 1880S–1888S. [CrossRef] [PubMed]

32. Krauss-Etschmann, S.; Shadid, R.; Campoy, C.; Hoster, E.; Demmelmair, H.; Jiménez, M.; Gil, A.; Rivero, M.; Veszpremi, B.;
Decsi, T.; et al. Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of
docosahexaenoic acid and eicosapentaenoic acid: A European randomized multicenter trial. Am. J. Clin. Nutr. 2007, 85, 1392–1400.
[CrossRef] [PubMed]

33. Escribano, J.; Luque, V.; Canals-Sans, J.; Ferre, N.; Koletzko, B.; Grote, V.; Weber, M.; Gruszfeld, D.; Szott, K.; Verduci, E.; et al.
Mental performance in 8-year-old children fed reduced protein content formula during the 1st year of life: Safety analysis of a
randomised clinical trial. Br. J. Nutr. 2016, 2, 22–30. [CrossRef] [PubMed]

34. Smith, A. Symbol Digit Modalities Test: Manual; Western Psychological Corporation: Los Angeles, CA, USA, 2002.
35. Llorente, A.M.; Voigt, R.G.; Williams, J.; Frailey, J.K.; Satz, P.; D’Elia, L.F. Children’s Color Trails Test 1 & 2: Test-retest reliability

and factorial validity. Clin. Neuropsychol. 2009, 23, 645–660. [CrossRef] [PubMed]
36. Van der Elst, W.; Van Boxtel, M.P.; Van Breukelen, G.J.; Jolles, J. The Stroop color-word test: Influence of age, sex, and education;

and normative data for a large sample across the adult age range. Assessment 2006, 13, 62–79. [CrossRef]
37. Peña-Casanova, J.; Quiñones-Ubeda, S.; Gramunt-Fombuena, N.; Quintana, M.; Aguilar, M.; Molinuevo, J.L.; Serradell, M.;

Robles, A.; Barquero, M.S.; Payno, M.; et al. Spanish Multicenter Normative Studies (NEURONORMA Project): Norms for the
Stroop color-word interference test and the Tower of London-Drexel. Arch. Clin. Neuropsychol. 2009, 24, 413–429. [CrossRef]

38. Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 2006;
Oxford University Press: Oxford, UK, 2018.

39. Kolarovic, L.; Fournier, N.C. A comparison of extraction methods for the isolation of phospholipids from biological sources. Anal.
Biochem. 1986, 156, 244–250. [CrossRef]

40. Jakobik, V.; Burus, I.; Decsi, T. Fatty acid composition of erythrocyte membrane lipids in healthy subjects from birth to young
adulthood. Eur. J. Pediatr. 2009, 168, 141–147. [CrossRef]

41. Molloy, A.M.; Scott, J.M. Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate
method. Methods Enzymol. 1997, 281, 43–53. [CrossRef]

42. García-Minguillan, C.J.; Fernández-Ballart, J.D.; Ceruelo, S.; Ríos, L.; Bueno, O.; Berrocal-Zaragoza, M.I.; Molloy, A.M.; Ueland,
P.M.; Meyer, K.; Murphy, M.M. Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and
methionine synthase reductase (MTRR) polymorphisms on homocysteine. Genes Nutr. 2014, 9, 435. [CrossRef]

43. Mills, J.L.; McPartlin, J.M.; Kirke, P.N.; Lee, Y.J.; Conley, M.R.; Weir, D.G.; Scott, J.M. Homocysteine metabolism in pregnancies
complicated by neural-tube defects. Lancet 1995, 345, 149–151. [CrossRef]

http://doi.org/10.1016/j.earlhumdev.2011.12.016
http://doi.org/10.1017/S0007114517003531
http://doi.org/10.3945/ajcn.111.015800
http://www.ncbi.nlm.nih.gov/pubmed/22071708
http://doi.org/10.1159/000377643
http://www.ncbi.nlm.nih.gov/pubmed/25766858
http://doi.org/10.3945/ajcn.112.051524
http://www.ncbi.nlm.nih.gov/pubmed/24067669
http://doi.org/10.1111/j.1365-3016.2009.01032.x
http://doi.org/10.3389/fnins.2013.00120
http://doi.org/10.3945/jn.109.118075
http://doi.org/10.1111/j.1365-3016.2012.01264.x
http://doi.org/10.1001/jama.2012.155925
http://doi.org/10.1080/13803395.2011.595397
http://doi.org/10.3945/ajcn.2009.27113G
http://doi.org/10.3945/ajcn.110.001107
http://www.ncbi.nlm.nih.gov/pubmed/21849596
http://doi.org/10.1093/ajcn/85.5.1392
http://www.ncbi.nlm.nih.gov/pubmed/17490978
http://doi.org/10.1017/S0007114515000768
http://www.ncbi.nlm.nih.gov/pubmed/31638498
http://doi.org/10.1080/13854040802427795
http://www.ncbi.nlm.nih.gov/pubmed/18942031
http://doi.org/10.1177/1073191105283427
http://doi.org/10.1093/arclin/acp043
http://doi.org/10.1016/0003-2697(86)90179-X
http://doi.org/10.1007/s00431-008-0719-9
http://doi.org/10.1016/S0076-6879(97)81007-5
http://doi.org/10.1007/s12263-014-0435-1
http://doi.org/10.1016/S0140-6736(95)90165-5


Nutrients 2021, 13, 131 15 of 16

44. González-Casanova, I.; Rzehak, P.; Stein, A.D.; García Feregrino, R.; Rivera Dommarco, J.A.; Barraza-Villarreal, A.; Demmelmair,
H.; Romieu, I.; Villalpando, S.; Martorell, R.; et al. Maternal single nucleotide polymorphisms in the fatty acid desaturase 1 and 2
coding regions modify the impact of prenatal supplementation with DHA on birth weight. Am. J. Clin. Nutr. 2016, 103, 1171–1178.
[CrossRef] [PubMed]

45. Klerk, M.V.P.; Clarke, R.; Blom, H.J.; Kok, F.J.; Schouten, E.G. MTHFR 677C–>T polymorphism and risk of coronary heart disease:
A meta-analysis. JAMA 2002, 288, 2023–2031. [CrossRef] [PubMed]

46. Roza, S.J.; van Batenburg-Eddes, T.; Steegers, E.A.; Jaddoe, V.W.; Mackenbach, J.P.; Hofman, A.; Verhulst, F.C.; Tiemeier, H.
Maternal folic acid supplement use in early pregnancy and child behavioural problems: The Generation R Study. Br. J. Nutr.
2010, 103, 445–452. [CrossRef]

47. Roth, C.; Magnus, P.; Schjolberg, S.; Stoltenberg, C.; Suren, P.; McKeague, I.W.; Davey, S.G.; Reichborn-Kjennerud, T.; Susser, E.
Folic acid supplements in pregnancy and severe language delay in children. JAMA 2011, 306, 1566–1573. [CrossRef]

48. Del Río, C.; Torres-Sánchez, L.; Chen, J.; Schnaas, L.; Hernández, C.; Osorio, E.; Galván-Portillo, M.; López-Carillo, L. Maternal
MTHFR 677C>T genotype and dietary intake of folate and vitamin B(12): Their impact on child neurodevelopment. Nutr.
Neurosci. 2009, 12, 13–20. [CrossRef]

49. Schlotz, W.; Jones, A.; Phillips, D.I.; Gale, C.R.; Robinson, S.M.; Godfrey, K.M. Lower maternal folate status in early pregnancy is
associated with childhood hyperactivity and peer problems in offspring. J. Child Psychol. Psychiatry 2010, 51, 594–602. [CrossRef]

50. Chmielewska, A.; Dziechciarz, P.; Gieruszczak-Bialek, D.; Horvath, A.; Piescik-Lech, M.; Ruszczynski, M.; Skorka, A.; Szajewska,
H. Effects of prenatal and/or postnatal supplementation with iron, PUFA or folic acid on neurodevelopment: Update. Br. J. Nutr.
2016, 122. [CrossRef]

51. Skorka, A.; Gieruszczak-Bialek, D.; Piescik, M.; Szajewska, H. Effects of prenatal and/or postnatal (maternal and/or child) folic
acid supplementation on the mental performance of children. Crit. Rev. Food Sci. Nutr. 2012, 52, 959–964. [CrossRef]

52. Bergen, N.E.; Jaddoe, V.W.; Timmermans, S.; Hofman, A.; Lindemans, J.; Russcher, H.; Raat, H.; Steegers-Theunissen, R.P.;
Steegers, E.A. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: The Gen-
eration R Study. BJOG 2012, 119, 739–751. [CrossRef]

53. Di, S.N.; Maggiano, N.; Caliandro, D.; Riccardi, P.; Evangelista, A.; Carducci, B.; Caruso, A. Homocysteine induces trophoblast
cell death with apoptotic features. Biol. Reprod. 2003, 69, 1129–1134. [CrossRef]

54. Van Mil, N.H.; Oosterbaan, A.M.; Steegers-Theunissen, R.P. Teratogenicity and underlying mechanisms of homocysteine in
animal models: A review. Reprod. Toxicol. 2010, 30, 520–531. [CrossRef] [PubMed]

55. Wald, N.J.; Morris, J.K.; Blakemore, C. Public health failure in the prevention of neural tube defects: Time to abandon the tolerable
upper intake level of folate. Public Health Rev. 2018, 39, 2. [CrossRef] [PubMed]

56. Escolano-Margarit, M.V.; Campoy, C.; Ramírez-Tortosa, M.C.; Demmelmair, H.; Miranda, M.T.; Gil, A.; Decsi, T.; Koletzko, B.V.
Effects of fish oil supplementation on the fatty acid profile in erythrocyte membrane and plasma phospholipids of pregnant
women and their offspring: A randomised controlled trial. Br. J. Nutr. 2013, 109, 1647–1656. [CrossRef] [PubMed]

57. Davis-Bruno, K.; Tassinari, M.S. Essential fatty acid supplementation of DHA and ARA and effects on neurodevelopment across
animal species: A review of the literature. Birth Defects Res. B Dev. Reprod. Toxicol. 2011, 92, 240–250. [CrossRef] [PubMed]

58. Friesen, R.W.; Innis, S.M. Linoleic acid is associated with lower long-chain n-6 and n-3 fatty acids in red blood cell lipids of
Canadian pregnant women. Am. J. Clin. Nutr. 2010, 91, 23–31. [CrossRef]

59. Sellmayer, A.; Danesch, U.; Weber, P.C. Effects of different polyunsaturated fatty acids on growth-related early gene expression
and cell growth. Lipids 1996, 31, S37–S40. [CrossRef] [PubMed]

60. Sellmayer, A.; Koletzko, B. Long-chain polyunsaturated fatty acids and eicosanoids in infants-physiological and pathophysiologi-
cal aspects and open questions. Lipids 1999, 34, 199–205. [CrossRef]

61. Anjos, T.; Altmae, S.; Emmett, P.; Tiemeier, H.; Closa-Monasterolo, R.; Luque, V.; Wiseman, S.; Pérez-García, M.; Lattka,
E.; Demmelmair, H.; et al. Nutrition and neurodevelopment in children: Focus on NUTRIMENTHE project. Eur. J. Nutr.
2013, 52, 1825–1842. [CrossRef]

62. Dunstan, J.A.; Simmer, K.; Dixon, G.; Prescott, S.L. Cognitive assessment of children at age 2(1/2) years after maternal fish oil
supplementation in pregnancy: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F45–F50. [CrossRef]

63. Makrides, M.; Gibson, R.A.; McPhee, A.J.; Yelland, L.; Quinlivan, J.; Ryan, P. Effect of DHA supplementation during pregnancy
on maternal depression and neurodevelopment of young children: A randomized controlled trial. JAMA 2010, 304, 1675–1683.
[CrossRef]

64. Jacobson, J.L.; Jacobson, S.W.; Muckle, G.; Kaplan-Estrin, M.; Ayotte, P.; Dewailly, E. Beneficial effects of a polyunsaturated fatty
acid on infant development: Evidence from the inuit of arctic Quebec. J. Pediatr. 2008, 152, 356–364. [CrossRef]

65. Figueroa, J.D.; Cordero, K.; Baldeosingh, K.; Torrado, A.I.; Walker, R.L.; Miranda, J.D.; León, M.D. Docosahexaenoic acid pretreatment
confers protection and functional improvements after acute spinal cord injury in adult rats. J. Neurotrauma 2012, 29, 551–566. [CrossRef]
[PubMed]

66. Haubner, L.; Sullivan, J.; Ashmeade, T.; Saste, M.; Wiener, D.; Carver, J. The effects of maternal dietary docosahexaenoic acid
intake on rat pup myelin and the auditory startle response. Dev. Neurosci. 2007, 29, 460–467. [CrossRef] [PubMed]

67. Ward, R.E.; Huang, W.; Curran, O.E.; Priestley, J.V.; Michael-Titus, A.T. Docosahexaenoic acid prevents white matter damage after
spinal cord injury. J. Neurotrauma 2010, 27, 1769–1780. [CrossRef] [PubMed]

http://doi.org/10.3945/ajcn.115.121244
http://www.ncbi.nlm.nih.gov/pubmed/26912491
http://doi.org/10.1001/jama.288.16.2023
http://www.ncbi.nlm.nih.gov/pubmed/12387655
http://doi.org/10.1017/S0007114509991954
http://doi.org/10.1001/jama.2011.1433
http://doi.org/10.1179/147683009X388913
http://doi.org/10.1111/j.1469-7610.2009.02182.x
http://doi.org/10.1017/S0007114514004243
http://doi.org/10.1080/10408398.2010.515042
http://doi.org/10.1111/j.1471-0528.2012.03321.x
http://doi.org/10.1095/biolreprod.103.015800
http://doi.org/10.1016/j.reprotox.2010.07.002
http://www.ncbi.nlm.nih.gov/pubmed/20656016
http://doi.org/10.1186/s40985-018-0079-6
http://www.ncbi.nlm.nih.gov/pubmed/29450103
http://doi.org/10.1017/S0007114512003716
http://www.ncbi.nlm.nih.gov/pubmed/22947225
http://doi.org/10.1002/bdrb.20311
http://www.ncbi.nlm.nih.gov/pubmed/21678548
http://doi.org/10.3945/ajcn.2009.28206
http://doi.org/10.1007/BF02637048
http://www.ncbi.nlm.nih.gov/pubmed/8729091
http://doi.org/10.1007/s11745-999-0354-z
http://doi.org/10.1007/s00394-013-0560-4
http://doi.org/10.1136/adc.2006.099085
http://doi.org/10.1001/jama.2010.1507
http://doi.org/10.1016/j.jpeds.2007.07.008
http://doi.org/10.1089/neu.2011.2141
http://www.ncbi.nlm.nih.gov/pubmed/21970623
http://doi.org/10.1159/000107047
http://www.ncbi.nlm.nih.gov/pubmed/17684314
http://doi.org/10.1089/neu.2010.1348
http://www.ncbi.nlm.nih.gov/pubmed/20698757


Nutrients 2021, 13, 131 16 of 16

68. Stillwell, W.; Wassall, S.R. Docosahexaenoic acid: Membrane properties of a unique fatty acid. Chem. Phys. Lipids 2003, 126, 1–27.
[CrossRef]

69. Peters, B.D.; Machielsen, M.W.; Hoen, W.P.; Caan, M.W.; Malhotra, A.K.; Szeszko, P.R.; Duran, M.; Olabarriaga, S.D.; de Haan, L.
Polyunsaturated fatty acid concentration predicts myelin integrity in early-phase psychosis. Schizophr. Bull. 2013, 39, 830–838.
[CrossRef]

70. Koletzko, B.; Lien, E.; Agostoni, C.; Bohles, H.; Campoy, C.; Cetin, I.; Decsi, T.; Dudenhausen, J.W.; Dupont, C.; Forsyth, S.; et al.
The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: Review of current knowledge and
consensus recommendations. J. Perinat. Med. 2008, 36, 5–14. [CrossRef]

http://doi.org/10.1016/S0009-3084(03)00101-4
http://doi.org/10.1093/schbul/sbs089
http://doi.org/10.1515/JPM.2008.001

	Introduction 
	Materials and Methods 
	Study Design and Subjects 
	Neuropsychological Assessment 
	Fatty Acid Analyses in Maternal and Umbilical Cord Plasma Phospholipids 
	Folate Analysis 
	Total Homocysteine 
	SNP Selection and Genotyping 
	MTHFR 677 C/T Polymorphism 
	Statistical Analysis 

	Results 
	Background and Baseline Characteristics of the NUHEAL Study Participants 
	Processing Speed Task of the NUHEAL Children at 7.5 and 9 Years Old 
	Prenatal Predictors of Processing Speed in Children up to 9 Years 
	Symbol Digit Modalities Test (SDMT) Hits 
	Children Color Trails Test (CCTT-1) 
	Stroop Color and Word Test (SCWT) 


	Discussion 
	Conclusions 
	References

